Duke Mathematical Journal

The Frobenius properad is Koszul

Ricardo Campos, Sergei Merkulov, and Thomas Willwacher

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We show the Koszulness of the properad governing involutive Lie bialgebras and also of the properads governing nonunital and unital-counital Frobenius algebras, solving a long-standing problem. This gives us minimal models for their deformation complexes, and for deformation complexes of their algebras which are discussed in detail. Using an operad of graph complexes we prove, with the help of an earlier result of one of the authors, that there is a highly nontrivial action of the Grothendieck–Teichmüller group GRT1 on (completed versions of) the minimal models of the properads governing Lie bialgebras and involutive Lie bialgebras by automorphisms. As a corollary, one obtains a large class of universal deformations of (involutive) Lie bialgebras and Frobenius algebras, parameterized by elements of the Grothendieck–Teichmüller Lie algebra. We also prove that for any given homotopy involutive Lie bialgebra structure on a vector space, there is an associated homotopy Batalin–Vilkovisky algebra structure on the associated Chevalley–Eilenberg complex.

Article information

Duke Math. J., Volume 165, Number 15 (2016), 2921-2989.

Received: 20 October 2014
Revised: 29 October 2015
First available in Project Euclid: 19 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 18D50: Operads [See also 55P48]
Secondary: 55P50: String topology 17B62: Lie bialgebras; Lie coalgebras

Frobenius algebras involutive Lie bialgebras operads string topology Grothendieck–Teichmüller group


Campos, Ricardo; Merkulov, Sergei; Willwacher, Thomas. The Frobenius properad is Koszul. Duke Math. J. 165 (2016), no. 15, 2921--2989. doi:10.1215/00127094-3645116. https://projecteuclid.org/euclid.dmj/1474296715

Export citation


  • [1] S. Barannikov, Modular operads and Batalin–Vilkovisky geometry, Int. Math. Res. Not. IMRN 2007, no. 19, art. ID rnm075.
  • [2] F. Brown, Mixed Tate motives over $\mathbb{Z}$, Ann. of Math. (2) 175 (2012), 949–976.
  • [3] R. Campos, T. Willwacher, and S. Merkulov, Deformation theory of the properads of Lie bialgebras and involutive Lie bialgebras, in preparation.
  • [4] M. Chas, Combinatorial Lie bialgebras of curves on surfaces, Topology 43 (2004), 543–568.
  • [5] M. Chas and D. Sullivan, “Closed string operators in topology leading to Lie bialgebras and higher string algebra” in The Legacy of Niels Henrik Abel, Springer, Berlin, 2004, 771–784.
  • [6] K. Cieliebak, K. Fukaya, and J. Latschev, Homological algebra related to surfaces with boundary, preprint, arXiv:1508.02741v1 [math.QA].
  • [7] K. Cieliebak and J. Latschev, “The role of string topology in symplectic field theory” in New Perspectives and Challenges in Symplectic Field Theory, CRM Proc. Lecture Notes 49, Amer. Math. Soc., Providence, 2009, 113–146.
  • [8] V. G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equations (in Russian), Dokl. Akad. Nauk SSSR 268 (1983), no. 2, 285–287; English translation in Soviet Math. Dokl. 27 (1983), 68–71.
  • [9] V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ (in Russian), Algebra i Analiz 2 (1990), no. 4, 149–181; English translation in Leningrad Math. J. 2 (1991), no. 4, 829–860.
  • [10] G. C. Drummond-Cole, J.-S. Park, and J. Terilla, Homotopy probability theory, I, J. Homotopy Relat. Struct. 10 (2015), 425–435.
  • [11] G. C. Drummond-Cole, J. Terilla, and T. Tradler, Algebras over $\Omega(\mathrm{co}{\mathbf{Frob}})$, J. Homotopy Relat. Struct. 5 (2010), 15–36.
  • [12] G. C. Drummond-Cole and B. Vallette, The minimal model for the Batalin–Vilkovisky operad, Selecta Math. (N.S.) 19 (2013), 1–47.
  • [13] P. Etingof and O. Schiffmann, Lectures on Quantum Groups, 2nd ed., Lect. Math. Phys., International Press, Somerville, Mass., 2002.
  • [14] H. Furusho, Four groups related to associators, preprint, arXiv:1108.3389v1 [math.QA].
  • [15] I. Gálvez-Carrillo, A. Tonks, and B. Vallette, Homotopy Batalin–Vilkovisky algebras, J. Noncommut. Geom. 6 (2012), 539–602.
  • [16] W. L. Gan, Koszul duality for dioperads, Math. Res. Lett. 10 (2003), 109–124.
  • [17] A. Hamilton, Noncommutative geometry and compactifications of the moduli space of curves, J. Noncommut. Geom. 4 (2010), 157–188.
  • [18] J. Hirsh and J. Millès, Curved Koszul duality theory, Math. Ann. 354 (2012), 1465–1520.
  • [19] T. Johnson-Freyd, “Poisson AKSZ theories and their quantizations” in String-Math (2013), Proc. Sympos. Pure Math. 88, Amer. Math. Soc., Providence, 2014, 291–306.
  • [20] T. Johnson-Freyd, Tree- versus graph-level quasilocal Poincaré duality on $S^{1}$, preprint, arXiv:1412.4664v2 [math.AT].
  • [21] M. Kapranov and Yu. Manin, Modules and Morita theorem for operads, Amer. J. Math. 123 (2001), 811–838.
  • [22] J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren Math. Wiss. 346 Springer, Heidelberg, 2012.
  • [23] M. Kontsevich, letter to Martin Markl, November 2002.
  • [24] O. Kravchenko, “Deformations of Batalin–Vilkovisky algebras” in Poisson Geometry (Warsaw, 1998), Banach Center Publ. 51, Polish Acad. Sci., Warsaw, 2000, 131–139.
  • [25] S. Mac Lane, Categorical algebra, Bull. Amer. Math. Soc. (N.S.) 71 (1965), 40–106.
  • [26] M. Markl, “Operads and PROPS” in Handbook of Algebra, Vol. 5, Handb. Algebra 5, Elsevier/North-Holland, Amsterdam, 2008, 87–140.
  • [27] M. Markl, On the origin of higher braces and higher-order derivations, J. Homotopy Relat. Struct. 10 (2015), 637–667.
  • [28] M. Markl, S. Merkulov, and S. Shadrin, Wheeled PROPs, graph complexes and the master equation, J. Pure Appl. Algebra 213 (2009), 496–535.
  • [29] M. Markl and A. A. Voronov, “PROPped up graph cohomology” in Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin, Vol. II, Progr. Math. 270, Birkhäuser, Boston, 2009, 249–281.
  • [30] J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer, New York, 1972.
  • [31] S. A. Merkulov, “Graph complexes with loops and wheels” in Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin, Vol. II, Progr. Math. 270, Birkhäuser, Boston, 2009, 311–354.
  • [32] S. A. Merkulov, Operads, configuration spaces and quantization, Bull. Braz. Math. Soc. (N.S.) 42 (2011), 683–781.
  • [33] S. A. Merkulov and B. Vallette, Deformation theory of representations of prop(erad)s, I, J. Reine Angew. Math. 634 (2009), 51–106. DOI:10.1515/CRELLE.2009.069; II, 636 (2009), 123–174.
  • [34] T. Schedler, A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not. IMRN 2005, no. 12, 725–760.
  • [35] D. Tamarkin, Action of the Grothendieck–Teichmueller group on the operad of Gerstenhaber algebras, preprint, arXiv:math/0202039v1 [math.QA].
  • [36] V. G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Éc. Norm. Supér. (4) 24 (1991), 635–704.
  • [37] B. Vallette, A Koszul duality for PROPs, Trans. Amer. Math. Soc. 359 (2007), no. 10, 4865–4943.
  • [38] B. Vallette, “Algebra + homotopy = operad” in Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ. 62, Cambridge Univ. Press, New York, 2014, 229–290.
  • [39] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge Univ. Press, Cambridge, 1994.
  • [40] T. Willwacher, Stable cohomology of polyvector fields, Math. Res. Lett. 21 (2014), 1501–1530.
  • [41] T. Willwacher, M. Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra, Invent. Math. 200 (2015), 671–760.
  • [42] T. Willwacher, The oriented graph complexes, Comm. Math. Phys. 334 (2015), 1649–1666.