Duke Mathematical Journal

Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions

Steve Hofmann, José María Martell, and Svitlana Mayboroda

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $E\subset\mathbb{R}^{n+1}$, $n\ge2$, be a uniformly rectifiable set of dimension $n$. Then bounded harmonic functions in $\Omega:=\mathbb{R}^{n+1}\setminus E$ satisfy Carleson measure estimates and are $\varepsilon$-approximable. Our results may be viewed as generalized versions of the classical F. and M. Riesz theorem, since the estimates that we prove are equivalent, in more topologically friendly settings, to quantitative mutual absolute continuity of harmonic measure and surface measure.

Article information

Source
Duke Math. J. Volume 165, Number 12 (2016), 2331-2389.

Dates
Received: 6 August 2014
Revised: 2 July 2015
First available in Project Euclid: 6 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1473186402

Digital Object Identifier
doi:10.1215/00127094-3477128

Mathematical Reviews number (MathSciNet)
MR3544283

Zentralblatt MATH identifier
06646643

Subjects
Primary: 28A75: Length, area, volume, other geometric measure theory [See also 26B15, 49Q15]
Secondary: 28A78: Hausdorff and packing measures 31B05: Harmonic, subharmonic, superharmonic functions 35J25: Boundary value problems for second-order elliptic equations 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25: Maximal functions, Littlewood-Paley theory 42B37: Harmonic analysis and PDE [See also 35-XX]

Keywords
Carleson measures square functions nontangential maximal functions $\varepsilon$-approximability harmonic measure Poisson kernel uniform rectifiability harmonic functions

Citation

Hofmann, Steve; Martell, José María; Mayboroda, Svitlana. Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions. Duke Math. J. 165 (2016), no. 12, 2331--2389. doi:10.1215/00127094-3477128. https://projecteuclid.org/euclid.dmj/1473186402.


Export citation

References

  • [1] P. Auscher, S. Hofmann, J. L. Lewis, and P. Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), 161–190.
  • [2] P. Auscher, S. Hofmann, C. Muscalu, T. Tao, and C. Thiele, Carleson measures, trees, extrapolation, and $T(b)$ theorems, Publ. Mat. 46 (2002), 257–325.
  • [3] J. Azzam, S. Hofmann, J. M. Martell, K. Nyström, and T. Toro, A new characterization of chord-arc domains, to appear in J. Eur. Math. Soc., preprint, arXiv:1406.2743v1 [math.CA].
  • [4] C. J. Bishop and P. W. Jones, Harmonic measure and arclength, Ann. of Math. (2) 132 (1990), 511–547.
  • [5] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559.
  • [6] L. Carleson and J. Garnett, Interpolating sequences and separation properties, J. Anal. Math. 28 (1975), 273–299.
  • [7] M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.
  • [8] B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Ration. Mech. Anal. 65 (1977), 275–288.
  • [9] B. E. J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math. 67 (1980), 297–314.
  • [10] B. E. J. Dahlberg, Approximation of harmonic functions, Ann. Inst. Fourier (Grenoble) 30 (1980), 97–107.
  • [11] B. E. J. Dahlberg, D. S. Jerison, and C. E. Kenig, Area integral estimates for elliptic differential operators with nonsmooth coefficients, Ark. Mat. 22 (1984), 97–108.
  • [12] G. David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoam. 4 (1988), 73–114.
  • [13] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, Berlin, 1991.
  • [14] G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), 831–845.
  • [15] G. David and S. Semmes, Singular Integrals and Rectifiable Sets in $\mathbb{R}^{n}$: Beyond Lipschitz Graphs, Astérisque 193, Soc. Math. France, Paris, 1991.
  • [16] G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Math Surveys Monogr. 38, Amer. Math. Soc., Providence, 1993.
  • [17] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, Fla., 1992.
  • [18] C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), 137–193.
  • [19] J. B. Garnett, Bounded Analytic Functions, Pure Appl. Math. 96, Academic Press, New York, 1981.
  • [20] J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2015.
  • [21] S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher, Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Amer. Math. Soc. 28 (2015), 483–529.
  • [22] S. Hofmann and J. L. Lewis, The Dirichlet problem for parabolic operators with singular drift terms, Mem. Amer. Math. Soc. 151 (2001), no. 719.
  • [23] S. Hofmann and J. M. Martell, $A_{\infty}$ estimates via extrapolation of Carleson measures and applications to divergence form elliptic operators, Trans. Amer. Math. Soc. 364 (2012), no. 1, 65–101.
  • [24] S. Hofmann and J. M. Martell, Uniform rectifiability and harmonic measure, I: Uniform rectifiability implies Poisson kernels in $L^{p}$, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 577–654.
  • [25] S. Hofmann, J. M. Martell, and S. Mayboroda, Uniform rectifiability and harmonic measure, III: Riesz transform bounds imply uniform rectifiability of boundaries of $1$-sided NTA domains, Int. Math. Res. Not. IMRN 2014, no. 10, 2702–2729.
  • [26] S. Hofmann, J. M. Martell, and S. Mayboroda, Transference of estimates for harmonic functions from Lipschitz to nontangentially accessible to uniformly rectifiable domains, in preparation.
  • [27] S. Hofmann, J. M. Martell, and I. Uriarte-Tuero, Uniform rectifiability and harmonic measure, II: Poisson kernels in $L^{p}$ imply uniform rectifiability, Duke Math. J. 163 (2014), 1601–1654.
  • [28] S. Hofmann, D. Mitrea, M. Mitrea, and A. Morris, $L^{p}$-square function estimates on spaces of homogeneous type and on uniformly rectifiable sets, to appear in Memoirs AMS, preprint, arXiv:1301.4943v1 [math.AP].
  • [29] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982), 80–147.
  • [30] C. Kenig, B. Kirchheim, J. Pipher, and T. Toro, Square functions and the $A_{\infty}$ property of elliptic measures, J. Geometric Anal. 26 (2016), 2383–2410.
  • [31] C. Kenig, H. Koch, J. Pipher, and T. Toro, A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations, Adv. Math. 153 (2000), 231–298.
  • [32] J. L. Lewis and M. A. M. Murray, The method of layer potentials for the heat equation in time-varying domains, Mem. Amer. Math. Soc. 114 (1995), no. 545.
  • [33] P. Mattila, M. S. Melnikov, and J. Verdera, The Cauchy integral, analytic capacity, and uniform rectifiability, Ann. of Math. (2) 144 (1996), 127–136.
  • [34] F. Nazarov, X. Tolsa, and A. Volberg, On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: The case of codimension $1$, Acta Math. 213 (2014), 237–321.
  • [35] F. Riesz and M. Riesz, “Über die Randwerte einer analytischen Funktion” Comptes Rendus du Quatrième Congrès des Mathématiciens Scandinaves (Stockholm, 1916), Almqvists and Wilksels, Uppsala, 1920, 27–44.
  • [36] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, 1970.
  • [37] N. T. Varopoulos, A remark on functions of bounded mean oscillation and bounded harmonic functions, Pacific J. Math. 74 (1978), 257–259.