Duke Mathematical Journal

Geodesic restrictions of arithmetic eigenfunctions

Simon Marshall

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let X be an arithmetic hyperbolic surface arising from a quaternion division algebra over Q. Let ψ be a Hecke–Maass form on X, and let be a geodesic segment. We obtain a power saving over the local bound of Burq, Gérard, and Tzvetkov for the L2-norm of ψ restricted to , by extending the technique of arithmetic amplification developed by Iwaniec and Sarnak. We also improve the local bounds for various Fourier coefficients of ψ along .

Article information

Source
Duke Math. J., Volume 165, Number 3 (2016), 463-508.

Dates
Received: 16 July 2013
Revised: 11 March 2015
First available in Project Euclid: 10 December 2015

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1449771973

Digital Object Identifier
doi:10.1215/00127094-3166736

Mathematical Reviews number (MathSciNet)
MR3466161

Zentralblatt MATH identifier
1377.11059

Subjects
Primary: 35P20: Asymptotic distribution of eigenvalues and eigenfunctions
Secondary: 11F25: Hecke-Petersson operators, differential operators (one variable) 11F41: Automorphic forms on GL(2); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces [See also 14J20]

Keywords
Maass form amplification symptotics of eigenfunctions

Citation

Marshall, Simon. Geodesic restrictions of arithmetic eigenfunctions. Duke Math. J. 165 (2016), no. 3, 463--508. doi:10.1215/00127094-3166736. https://projecteuclid.org/euclid.dmj/1449771973


Export citation

References

  • [1] G. V. Avakumović, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z. 65 (1956), 327–344.
  • [2] M. D. Blair and C. D. Sogge, Refined and microlocal Kakeya–Nikodym bounds for eigenfunctions in two dimensions, Anal. PDE 8 (2015), 747–764.
  • [3] V. Blomer and F. Brumley, On the Ramanujan conjecture over number fields, Ann. of Math. (2) 174 (2011), 581–605.
  • [4] V. Blomer and R. Holowinsky, Bounding sup-norms of cusp forms of large level, Invent. Math. 179 (2010), 645–681.
  • [5] V. Blomer, R. Khan, and M. Young, Distribution of mass of holomorphic cusp forms, Duke Math. J. 162 (2013), 2609–2644.
  • [6] V. Blomer and P. Mága, The sup-norm problem for $PGL(4)$, Int. Math. Res. Not. IMRN 2015, no. 14, 5311–5332.
  • [7] V. Blomer and P. Mága, Subconvexity for sup-norms of automorphic forms on $PGL(n)$, preprint, arXiv:1405.6691v1 [math.NT].
  • [8] V. Blomer and Ph. Michel, Sup-norms of eigenfunctions on arithmetic ellipsoids, Int. Math. Res. Not. IMRN 2011, no. 21, 4934–4966.
  • [9] V. Blomer and A. Pohl, The sup-norm problem on the Siegel modular space of rank two, preprint, arXiv:1402.4635v2 [math.NT].
  • [10] J. Bourgain, “Geodesic restrictions and $L^{p}$ estimates for eigenfunctions of Riemannian surfaces” in Linear and Complex Analysis, Amer. Math. Soc. Transl., Adv. Math. Sci., 2009, 27–35.
  • [11] N. Burq, P. Gérard, and N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds, Duke Math. J. 138 (2007), 445–486.
  • [12] X. Chen, An improvement on eigenfunction restriction estimates for compact boundaryless Riemannian manifolds with nonpositive sectional curvature, Trans. Amer. Math. Soc. 367 (2015), 4019–4039.
  • [13] X. Chen and C. Sogge, A few endpoint geodesic restriction estimates for eigenfunctions, Comm. Math. Phys. 329 (2014), 435–459.
  • [14] X. Chen and C. Sogge, On integrals of eigenfunctions over geodesics, Proc. Amer. Math. Soc. 143 (2015), 151–161.
  • [15] M. Eichler, Lectures on Modular Correspondences, Tata Inst. Fund. Res. Lect. Math. 9, Tata Inst. Fund. Res., Mumbai, 1955.
  • [16] R. Gangolli, On the plancherel formula and the Paley–Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. (2) 93 (1971), 105–165.
  • [17] R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Ergeb. Math. Grenzgeb. 101, Springer, Berlin, 1988.
  • [18] A. Ghosh, A. Reznikov, and P. Sarnak, Nodal domains of Maass forms, I, Geom. Funct. Anal. 23 (2013), 1515–1568.
  • [19] G. Harcos and N. Templier, On the sup-norm of Maass cusp forms of large level, II, Int. Math. Res. Not. IMRN 2011, no. 20, 4764–4774.
  • [20] H. Iwaniec and P. Sarnak, $L^{\infty}$ norms of eigenfunctions of arithmetic surfaces, Ann. of Math. (2) 141 (1995), 301–320.
  • [21] B. M. Levitan, On the asymptoptic behavior of the spectral function of a self-adjoint differential equation of second order, Isv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 325–352.
  • [22] S. Marshall, Restrictions of $SL_{3}$ Maass forms to maximal flat subspaces, Int. Math. Res. Not. IMRN 2015, no. 16, 6988–7015.
  • [23] S. Marshall, $L^{p}$ bounds for higher rank eigenfunctions and asymptotics of spherical functions, to appear in J. Eur. Math. Soc., preprint, arXiv:1106.0534.
  • [24] K. Martin and D. Whitehouse, Central $L$-values and toric periods for $GL_{2}$, Int. Math. Res. Not. IMRN 2009, no. 1, 141–191.
  • [25] P. Michel and A. Venkatesh, The subconvexity problem for $GL_{2}$, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271.
  • [26] T. Murphy and E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton, 1993.
  • [27] A. Reznikov, A uniform bound for geodesic periods of eigenfunctions on hyperbolic surfaces, Forum Math. 27 (2015), 1569–1590.
  • [28] P. Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. 40 (2003), 441–478.
  • [29] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series” in Collected Papers, Vol. 1, Springer, New York, 1989.
  • [30] C. Sogge, Concerning the $L^{p}$ norm of spectral clusters of second order elliptic operators on a compact manifold, J. Funct. Anal. 77 (1988), 123–138.
  • [31] C. Sogge, J. Toth, and S. Zelditch, About the blowup of quasimodes on Riemannian manifolds, J. Geom. Anal. 21 (2009), 150–173.
  • [32] C. Sogge and S. Zelditch, Riemannian manifolds with maximal eigenfunction growth, Duke Math. J. 114 (2002), 387–437.
  • [33] C. Sogge and S. Zelditch, “On eigenfunction restriction estimates and $L^{4}$-bounds for compact surfaces with nonpositive curvature” in Advances in Analysis: The Legacy of Elias M. Stein, Princeton Univ. Press, Princeton, 2014, 447–462.
  • [34] N. Templier, On the sup-norm of Maass cusp forms of large level, Selecta Math. 16 (2010), 501–531.
  • [35] J.-L. Waldspurger, Sur les valeurs de fonctions L-automorphes en leur centre de symétrie, Comp. Math. 54 (1985), 173–242.
  • [36] S. Zelditch, Kuznecov sum formulae and Szegö limit formulae on manifolds, Comm. Partial Differential Equations 17 (1992), 221–260.