Duke Mathematical Journal

Crofton measures and Minkowski valuations

Franz E. Schuster

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A description of continuous rigid motion compatible Minkowski valuations is established. As an application, we present a Brunn-Minkowski type inequality for intrinsic volumes of these valuations

Article information

Source
Duke Math. J., Volume 154, Number 1 (2010), 1-30.

Dates
First available in Project Euclid: 14 July 2010

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1279140505

Digital Object Identifier
doi:10.1215/00127094-2010-033

Mathematical Reviews number (MathSciNet)
MR2668553

Zentralblatt MATH identifier
1205.52004

Subjects
Primary: 52A90
Secondary: 43A90: Spherical functions [See also 22E45, 22E46, 33C55] 52A40: Inequalities and extremum problems

Citation

Schuster, Franz E. Crofton measures and Minkowski valuations. Duke Math. J. 154 (2010), no. 1, 1--30. doi:10.1215/00127094-2010-033. https://projecteuclid.org/euclid.dmj/1279140505


Export citation

References

  • S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math. (2) 149 (1999), 977--1005.
  • —, Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture, Geom. Funct. Anal. 11 (2001), 244--272.
  • —, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations, J. Differential Geom. 63 (2003), 63--95.
  • —, ``Hard Lefschetz theorem for valuations and related questions of integral geometry'' in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1850, Springer, Berlin, 2004, 9--20.
  • —, The multiplicative structure on continuous polynomial valuations, Geom. Funct. Anal. 14 (2004), 1--26.
  • —, Theory of valuations on manifolds, I: Linear spaces, Israel J. Math. 156 (2006), 311--339.
  • —, Theory of valuations on manifolds, II, Adv. Math. 207 (2006), 420--454.
  • —, ``Theory of valuations on manifolds, IV: New properties of the multiplicative structure'' in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1910, Springer, Berlin, 2007, 1--44.
  • S. Alesker and J. Bernstein, Range characterization of the cosine transform on higher Grassmannians, Adv. Math. 184 (2004), 367--379.
  • S. Alesker and J. H. G. Fu, Theory of valuations on manifolds, III: Multiplicative structure in the general case, Trans. Amer. Math. Soc. 360, no. 4 (2008), 1951--1981.
  • A. Bernig, Valuations with Crofton formula and Finsler geometry, Adv. Math. 210 (2007), 733--753.
  • —, A Hadwiger-type theorem for the special unitary group, Geom. Funct. Anal. 19 (2009), 356--372.
  • —, A product formula for valuations on manifolds with applications to the integral geometry of the quaternionic line, Comment. Math. Helv. 84 (2009), 1--19.
  • A. Bernig and L. Bröcker, Valuations on manifolds and Rumin cohomology, J. Differential Geom. 75 (2007), 433--457.
  • A. Bernig and J. H. G. Fu, Convolution of convex valuations, Geom. Dedicata 123 (2006), 153--169.
  • W. Casselman, Canonical extensions of Harish-Chandra modules to representations of $G$, Canad. J. Math. 41 (1989), 385--438.
  • J. H. G. Fu, Structure of the unitary valuation algebra, J. Differential Geom. 72 (2006), 509--533.
  • R. J. Gardner, Geometric Tomography, Encyclopedia Math. Appl. 58, Cambridge Univ. Press, Cambridge, 1995.
  • P. Goodey and W. Weil, The determination of convex bodies from the mean of random sections, Math. Proc. Cambridge Philos. Soc. 112 (1992), 419--430.
  • E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), 77--115.
  • C. Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), 2253--2276.
  • C. Haberl and M. Ludwig, A characterization of $L_p$ intersection bodies, Int. Math. Res. Not. 2006, art. ID 10548.
  • H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957.
  • M. Kiderlen, Blaschke- and Minkowski-endomorphisms of convex bodies, Trans. Amer. Math. Soc. 358, no. 12 (2006), 5539--5564.
  • D. A. Klain, An Euler relation for valuations on polytopes, Adv. Math. 147 (1999), 1--34.
  • —, Even valuations on convex bodies, Trans. Amer. Math. Soc. 352, no. 1 (2000), 71--93.
  • D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge Univ. Press, Cambridge, 1997.
  • M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), 158--168.
  • —, Valuations of polytopes containing the origin in their interiors, Adv. Math. 170 (2002), 239--256.
  • —, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), 159--188.
  • —, Minkowski valuations, Trans. Amer. Math. Soc. 357, no. 10 (2005), 4191--4213.
  • —, Intersection bodies and valuations, Amer. J. Math. 128 (2006), 1409--1428.
  • M. Ludwig and M. Reitzner, A characterization of affine surface area, Adv. Math. 147 (1999), 138--172.
  • —, A classification of $\mathrm{SL}(n)$ invariant valuations, to appear in Ann. of Math. (2).
  • E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287, no. 1 (1985), 91--105.
  • —, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339, no. 2 (1993), 901--916.
  • E. Lutwak, D. Yang, and G. Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111--132.
  • —, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), 375--390.
  • —, Volume inequalities for subspaces of $L_p$, J. Differential Geom. 68 (2004), 159--184.
  • P. Mcmullen, Valuations and Euler-type relations on certain classes of convex polytopes, Proc. London Math. Soc. (3) 35 (1977), 113--135.
  • —, ``Valuations and dissections'' in Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993, 933--990.
  • R. Schneider, Equivariant endomorphisms of the space of convex bodies, Trans. Amer. Math. Soc. 194 (1974), 53--78.
  • —, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl. 44, Cambridge Univ. Press, Cambridge, 1993.
  • R. Schneider and F. E. Schuster, Rotation equivariant Minkowski valuations, Int. Math. Res. Not. 2006, art. ID 72894.
  • R. Schneider and W. Weil, Stochastic and Integral Geometry, Probab. Appl. (N. Y.), Springer, Berlin, 2008.
  • F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika 53 (2006), 211--234.
  • —, Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359, no. 11 (2007), 5567--5591.
  • —, Valuations and Busemann-Petty type problems, Adv. Math. 219 (2008), 344--368.
  • M. Takeuchi, Modern Spherical Functions, Transl. Math. Monogr. 135, Amer. Math. Soc., Providence, 1994.
  • N. R. Wallach, Real Reductive Groups. I, Pure Appl. Math. 132, Academic Press, Boston, 1988.