Duke Mathematical Journal

Local limit theorem for nonuniformly partially hyperbolic skew-products and Farey sequences

Sébastien Gouëzel

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study skew-products of the form (x,ω)(Tx,ω+φ(x)), where T is a nonuniformly expanding map on a space X, preserving a (possibly singular) probability measure μ~, and φ:XS1 is a C1 function. Under mild assumptions on μ~ and φ, we prove that such a map is exponentially mixing and satisfies both the central limit and local limit theorems. These results apply to a random walk related to the Farey sequence, thereby answering a question of Guivarc'h and Raugi [GR, Section 5.3]

Article information

Duke Math. J., Volume 147, Number 2 (2009), 193-284.

First available in Project Euclid: 17 March 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 37A25: Ergodicity, mixing, rates of mixing 37A50: Relations with probability theory and stochastic processes [See also 60Fxx and 60G10] 37D30: Partially hyperbolic systems and dominated splittings
Secondary: 37A30: Ergodic theorems, spectral theory, Markov operators {For operator ergodic theory, see mainly 47A35} 37D25: Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)


Gouëzel, Sébastien. Local limit theorem for nonuniformly partially hyperbolic skew-products and Farey sequences. Duke Math. J. 147 (2009), no. 2, 193--284. doi:10.1215/00127094-2009-011. https://projecteuclid.org/euclid.dmj/1237295909

Export citation


  • J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., Providence, 1997.
  • J. F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity 17 (2004), 1193--1215.
  • J. F. Alves, C. Bonatti, and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math. 140 (2000), 351--398.
  • J. F. Alves, S. Luzzatto, and V. Pinheiro, Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 817--839.
  • N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. (4) 33 (2000), 33--56.
  • V. Araujo and M. J. Pacifico, Physical measures for infinite-modal maps, preprint, 2004.
  • A. Avila, S. Gouëzel, and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci. 104 (2006), 143--211.
  • V. Baladi and B. ValléE, Euclidean algorithms are Gaussian, J. Number Theory 110 (2005), 331--386.
  • —, Exponential decay of correlations for surface semi-flows without finite Markov partitions, Proc. Amer. Math. Soc. 133 (2005), 865--874. (electronic).
  • J.-B. Bardet, S. Gouëzel, and G. Keller, Limit theorems for coupled interval maps, Stoch. Dyn. 7 (2007), 17--36.
  • M. I. Brin and J. B. Pesin, Partially hyperbolic dynamical systems (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 38, (1974) 170--212.
  • H. Bruin, S. Luzzatto, and S. Van Strien, Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. (4) 36 (2003), 621--646.
  • J.-P. Conze and Y. Guivarc'H, ``Densité d'orbites d'actions de groupes linéaires et propriétés d'équidistribution de marches aléatoires'' in Rigidity in Dynamics and Geometry (Cambridge, 2000), Springer, Berlin, 2002, 39--76.
  • W. De Melo and S. Van Strien, One-dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer, Berlin, 1993.
  • T.-C. Dinh and N. Sibony, Decay of correlations for meromorphic maps and Hölder observables, preprint, 2005.
  • D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), 357--390.
  • —, On mixing properties of compact group extensions of hyperbolic systems, Israel J. Math. 130 (2002), 157--205.
  • —, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc. 356 (2004), 1637--1689. (electronic).
  • S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields 128 (2004), 82--122.
  • —, Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), 997--1024.
  • —, Decay of correlations for nonuniformly expanding systems, Bull. Soc. Math. France 134 (2006), 1--31.
  • —, Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes, Ph.D. dissertation, Université Paris-Sud, 2004.
  • Y. Guivarc'H and J. Hardy, Théorèmes limites pour une classe de chaî nes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 73--98.
  • Y. Guivarc'H and A. Raugi, Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. École Norm. Sup. (4) 40 (2007), 209--249.
  • H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc. 118 (1993), 627--634.
  • H. Hennion and L. Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Math. 1766, Springer, Berlin, 2001.
  • A. G. Kachurovskiĭ, Rates of convergence in ergodic theorems, Russian Math. Surveys 51 (1996), 653--703.
  • F. Naud, Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci. École Norm. Sup. (4) 38 (2005), 116--153.
  • D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems 18 (1998), 441--456.
  • M. Pollicott and R. Sharp, Error terms for closed orbits of hyperbolic flows, Ergodic Theory Dynam. Systems 21 (2001), 545--562.
  • D. J. Rudolph, Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math. 34 (1978), 36--60.
  • D. Ruelle, Flots qui ne mélangent pas exponentiellement, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 191--193.
  • O. Sarig, Subexponential decay of correlations, Invent. Math. 150 (2002), 629--653.
  • L. Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math. 123 (2001), 715--759.
  • H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library 18, North-Holland, Amsterdam, 1978.
  • M. Tsujii, Decay of correlations in suspension semi-flows of angle-multiplying maps, Ergodic Theory Dynam. Systems 28 (2008), 291--317.
  • S. Waddington, Large deviation asymptotics for Anosov flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 445--484.
  • L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), 585--650.
  • —, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153--188.