Duke Mathematical Journal

Amenability via random walks

Laurent Bartholdi and Bálint Virág

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We use random walks to show that the Basilica group is amenable and thus answering an open question of Grigorchuk and Żuk [9]. Our results separate the class of amenable groups from the closure of subexponentially growing groups under the operations of group extension and direct limits; these classes are separated even within the realm of finitely presented groups.

Article information

Duke Math. J., Volume 130, Number 1 (2005), 39-56.

First available in Project Euclid: 12 November 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20E34: General structure theorems 60G50: Sums of independent random variables; random walks


Bartholdi, Laurent; Virág, Bálint. Amenability via random walks. Duke Math. J. 130 (2005), no. 1, 39--56. doi:10.1215/S0012-7094-05-13012-5. https://projecteuclid.org/euclid.dmj/1131804019

Export citation


  • L. Bartholdi, Amenability of groups acting on trees, preprint.
  • L. Bartholdi, R. I. Grigorchuk, and V. V. Nekrashevych, ``From fractal groups to fractal sets'' in Fractals in Graz 2001, Trends Math., Birkhaüser, Basel, 2003, 25--118.
  • L. Bartholdi, V. A. Kaimanovich, V. V. Nekrashevych, and B. ViráG, Amenability of automata groups, preprint, 2004.
  • T. G. Ceccherini-Silberstein, R. I. Grigorchuk, and P. De La Harpe [P. De Lya Arp, R. I. Grigorchuk, T. Chekerini-SilberstaĭN], Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces (in Russian), Tr. Mat. Inst. Steklova 224 (1999), Algebra. Topol. Differ. Uravn. i ikh Prilozh., 68--111.; English translation in Proc. Steklov Inst. Math. 1999, no. 1 (224), 57--97.
  • C. Chou, Elementary amenable groups, Illinois J. Math. 24 (1980), 396--407.
  • M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509--544.
  • R. Durrett, Probability: Theory and Examples, 2nd ed., Duxbury Press, Belmont, Calif., 1996.
  • R. I. Grigorchuk, An example of a finitely presented amenable group that does not belong to the class EG (in Russian), Mat. Sb. 189, no. 1 (1998), 79--100.; English translation in Sb. Math. 189, no. 1--2. (1998), 75--95.
  • R. I. Grigorchuk and A. \Raise6pt.\fontsize813.5\selectfontZuk, ``On a torsion-free weakly branch group defined by a three state automaton'' in International Conference on Geometric and Combi- natorial Methods in Group Theory and Semigroup Theory (Lincoln, Neb. 2000), Internat. J. Algebra Comput. 12, World Sci., Singapore, 2002, 223--246.
  • —, ``Spectral properties of a torsion-free weakly branch group defined by a three state automaton'' in Computational and Statistical Group Theory (Las Vegas, Nev./Hoboken, N.J., 2001), Contemp. Math. 298, Amer. Math. Soc., Providence, 2002, 57--82.
  • Y. Guivarc'H, ``Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire'' in Conference on Random Walks (Kleebach, France, 1979), Astérisque 74, Soc. Math. France, Montrouge, 1980, 47--98.
  • V. A. Kaimanovich, ``Münchhausen trick'' and amenability of self-similar walks, to appear in Internat. J. Algebra Comput. 15 (2005).
  • V. A. Kaimanovich and W. Woess, Boundary and entropy of space homogeneous Markov chains, Ann. Probab. 30 (2002), 323--363.
  • H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146--156.
  • R. Lyons with Y. Peres, Probability on trees and networks, book manuscript, 2005, http://mypage.iu.edu/, rdlyons/
  • J. Von Neumann, Zur allgemeinen Theorie des Masses, Fundamenta 13 (1929), 73--116., 333; also in Collected Works, Vol. 1: Logic, Theory of Sets and Quantum Mechanics, Pergamon Press, New York, 1961, 599--642.
  • W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math. 138, Cambridge Univ. Press, Cambridge, 2000.