Duke Mathematical Journal
- Duke Math. J.
- Volume 101, Number 3 (2000), 359-426.
A categorification of the Jones polynomial
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 101, Number 3 (2000), 359-426.
Dates
First available in Project Euclid: 17 August 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1092749199
Digital Object Identifier
doi:10.1215/S0012-7094-00-10131-7
Mathematical Reviews number (MathSciNet)
MR1740682
Zentralblatt MATH identifier
0960.57005
Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 57R56: Topological quantum field theories
Citation
Khovanov, Mikhail. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), no. 3, 359--426. doi:10.1215/S0012-7094-00-10131-7. https://projecteuclid.org/euclid.dmj/1092749199
References
- S. Akbulut and J. McCarthy, Casson's Invariant for Oriented Homology $3$-spheres---An Exposition, Math. Notes 36, Princeton Univ. Press, Princeton, 1990.
- A. A. Beilinson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of $\mathrm{GL}_n$, Duke Math. J. 61 (1990), 655--677.Mathematical Reviews (MathSciNet): MR1074310
Zentralblatt MATH: 0713.17012
Digital Object Identifier: doi:10.1215/S0012-7094-90-06124-1
Project Euclid: euclid.dmj/1077296831 - J. Bernstein, I. Frenkel, and M. Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of $U(\mf{sl}_2)$ by projective and Zuckerman functors, to appear in Selecta Math. (N.S.).Mathematical Reviews (MathSciNet): MR1714141
Zentralblatt MATH: 0981.17001
Digital Object Identifier: doi:10.1007/s000290050047 - J. S. Carter and M. Saito, Reidemeister moves for surface isotopies and their interpretation as moves to movies, J. Knot Theory Ramifications 2 (1993), 251--284.Mathematical Reviews (MathSciNet): MR1238875
Zentralblatt MATH: 0808.57020
Digital Object Identifier: doi:10.1142/S0218216593000167 - L. Crane and I. B. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994), 5136--5154.Mathematical Reviews (MathSciNet): MR1295461
Zentralblatt MATH: 0892.57014
Digital Object Identifier: doi:10.1063/1.530746 - J. Fischer, 2-categories and 2-knots, Duke Math. J. 75 (1994), 493--526.Mathematical Reviews (MathSciNet): MR1290200
Zentralblatt MATH: 0847.57008
Digital Object Identifier: doi:10.1215/S0012-7094-94-07514-5
Project Euclid: euclid.dmj/1077287619 - A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), 215--240.Mathematical Reviews (MathSciNet): MR956166
Zentralblatt MATH: 0684.53027
Digital Object Identifier: doi:10.1007/BF01218578
Project Euclid: euclid.cmp/1104161987 - I. B. Frenkel and M. Khovanov, Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2)$, Duke Math. J. 87 (1997), 409--480.Mathematical Reviews (MathSciNet): MR1446615
Zentralblatt MATH: 0883.17013
Digital Object Identifier: doi:10.1215/S0012-7094-97-08715-9
Project Euclid: euclid.dmj/1077242324 - I. Grojnowski and G. Lusztig, ``On bases of irreducible representations of quantum $\mathrm{GL}_n$'' in Kazhdan-Lusztig Theory and Related Topics (Chicago, Ill., 1989), Contemp. Math. 139, Amer. Math. Soc., Providence, 1992, 167--174.
- F. Jaeger, D. L. Vertigan, and D. J. A. Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge. Philos. Soc. 108 (1990), 35--53.Mathematical Reviews (MathSciNet): MR1049758
Zentralblatt MATH: 0747.57006
Digital Object Identifier: doi:10.1017/S0305004100068936 - V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 103--111.Mathematical Reviews (MathSciNet): MR766964
Digital Object Identifier: doi:10.1090/S0273-0979-1985-15304-2
Project Euclid: euclid.bams/1183552338 - L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395--407.Mathematical Reviews (MathSciNet): MR899057
Digital Object Identifier: doi:10.1016/0040-9383(87)90009-7 - M. Khovanov, Graphical calculus, canonical bases and Kazhdan-Lusztig theory, Ph.D. thesis, Yale University, 1997.Mathematical Reviews (MathSciNet): MR2695927
- W. B. R. Lickorish and M. B. Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988), 527--539.
- G. Lusztig, Introduction to Quantum Groups, Progr. Math. 110, Birkhäuser, Boston, 1993.Mathematical Reviews (MathSciNet): MR1227098
- H. Murakami, Quantum $\mathrm{SU}(2)$-invariants dominate Casson's $\mathrm{SU}(2)$-invariant, Math. Proc. Cambridge Philos. Soc. 115 (1994), 253--281.Mathematical Reviews (MathSciNet): MR1277059
Zentralblatt MATH: 0832.57005
Digital Object Identifier: doi:10.1017/S0305004100072078 - G. Meng and C. H. Taubes, ${\underline{SW}}=$ Milnor torsion, Math. Res. Lett. 3 (1996), 661--674.
- M. B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), 285--296.Mathematical Reviews (MathSciNet): MR948102
Zentralblatt MATH: 0645.57007
Digital Object Identifier: doi:10.1007/BF01394334

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A trivial tail homology for non-$A$–adequate links
Lee, Christine Ruey Shan, Algebraic & Geometric Topology, 2018 - A categorification for the chromatic polynomial
Helme-Guizon, Laure and Rong, Yongwu, Algebraic & Geometric Topology, 2005 - On Khovanov's categorification of the Jones polynomial
Bar-Natan, Dror, Algebraic & Geometric Topology, 2002
- A trivial tail homology for non-$A$–adequate links
Lee, Christine Ruey Shan, Algebraic & Geometric Topology, 2018 - A categorification for the chromatic polynomial
Helme-Guizon, Laure and Rong, Yongwu, Algebraic & Geometric Topology, 2005 - On Khovanov's categorification of the Jones polynomial
Bar-Natan, Dror, Algebraic & Geometric Topology, 2002 - Volume conjecture: refined and categorified
Fuji, Hiroyuki, Gukov, Sergei, Sułkowski, Piotr, and Awata, Hidetoshi, Advances in Theoretical and Mathematical Physics, 2012 - On the Mahler measure of Jones polynomials under twisting
Champanerkar, Abhijit and Kofman, Ilya, Algebraic & Geometric Topology, 2005 - Categorification of the Kauffman bracket skein module of $I$–bundles over surfaces
Asaeda, Marta M, Przytycki, Jozef H, and Sikora, Adam S, Algebraic & Geometric Topology, 2004 - The Jones polynomial of rational links
Qazaqzeh, Khaled, Yasein, Moh'd, and Abu-Qamar, Majdoleen, Kodai Mathematical Journal, 2016 - Khovanov homology, sutured Floer homology and annular links
Grigsby, J Elisenda and Wehrli, Stephan M, Algebraic & Geometric Topology, 2010 - Grid diagrams and Khovanov homology
Droz, Jean-Marie and Wagner, Emmanuel, Algebraic & Geometric Topology, 2009 - The strong slope conjecture and torus knots
KALFAGIANNI, Efstratia, Journal of the Mathematical Society of Japan, 2019
