Duke Mathematical Journal

Homogeneous spaces without taut embeddings

Gudlaugur Thorbergsson

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 57, Number 1 (1988), 347-355.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306862

Digital Object Identifier
doi:10.1215/S0012-7094-88-05716-X

Mathematical Reviews number (MathSciNet)
MR952239

Zentralblatt MATH identifier
0662.53051

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53C40: Global submanifolds [See also 53B25] 57R40: Embeddings

Citation

Thorbergsson, Gudlaugur. Homogeneous spaces without taut embeddings. Duke Math. J. 57 (1988), no. 1, 347--355. doi:10.1215/S0012-7094-88-05716-X. https://projecteuclid.org/euclid.dmj/1077306862


Export citation

References

  • [1] T. F. Banchoff, The spherical two-piece property and tight surfaces in spheres, J. Differential Geometry 4 (1970), 193–205.
  • [2] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029.
  • [3] T. E. Cecil and P. J. Ryan, Tight and Taut Immersions of Manifolds, Research Notes in Mathematics, vol. 107, Pitman, Boston-London-Melbourne, 1985.
  • [4] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates).
  • [5] D. Ferus, The tightness of extrinsic symmetric submanifolds, Math. Z. 181 (1982), no. 4, 563–565.
  • [6] W.-Y. Hsiang, R. S. Palais, and C.-L. Terng, The topology of isoparametric submanifolds, preprint.
  • [7] S. Kobayashi, Imbeddings of homogeneous spaces with minimum total curvature, Tôhoku Math. J. (2) 19 (1967), 63–70.
  • [8] N. H. Kuiper, Tight embeddings and maps. Submanifolds of geometrical class three in $E^N$, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer-Verlag, Berlin-Heidelberg-New York, 1980, pp. 97–145.
  • [9] J. McCleary and W. Ziller, On the free loop space of homogeneous spaces, Amer. J. Math. 109 (1987), no. 4, 765–781.
  • [10] A. L. Oniščik, Transitive compact transformation groups, Mat. Sb. (N.S.) 60 (102) (1963), 447–485, [Russian]; Amer. Math. Soc. Transl. 55 (1966) 153–194.
  • [11] T. Ozawa, On critical sets of distance functions to a taut submanifold, Math. Ann. 276 (1986), no. 1, 91–96.
  • [12] U. Pinkall, Curvature properties of taut submanifolds, Geom. Dedicata 20 (1986), no. 1, 79–83.
  • [13] U. Pinkall and G. Thorbergsson, Taut $3$-manifolds, preprint.
  • [14] H. Reckziegel, On the eigenvalues of the shape operator of an isometric immersion into a space of constant curvature, Math. Ann. 243 (1979), no. 1, 71–82.
  • [15] C. U. Sánchez, $k$-symmetric submanifolds of $\bf R\sp N$, Math. Ann. 270 (1985), no. 2, 297–316.
  • [16] M. Takeuchi and S. Kobayashi, Minimal imbeddings of $R$-spaces, J. Differential Geometry 2 (1968), 203–215.
  • [17] G. Thorbergsson, Dupin hypersurfaces, Bull. London Math. Soc. 15 (1983), no. 5, 493–498.
  • [18]1 J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms. I, J. Differential Geometry 2 (1968), 77–114.
  • [18]2 J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms. II, J. Differential Geometry 2 (1968), 115–159.