Differential and Integral Equations

On solutions of nondegenerate wave equations with nonlinear damping terms

Jeong Ja Bae and Jong Yeoul Park

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $\Omega $ be a bounded domain in $\Bbb R^N$ with smooth boundary $\partial \Omega$. In this paper, we consider the existence and energy decay of solutions of the following problem: \begin{align} & u_{tt}(t,x)-(a+b (\|\nabla u(t,x)\|_2^2+\|\nabla v(t,x)\|_2^2)^\gamma) \Delta u(t,x)+\beta \Delta^2 u(t,x) \nonumber \\ & \quad+\delta|u_t(t,x)|^{\rho}u_t(t,x) =\mu|u(t,x)|^{\alpha}u(t,x), \quad x \in \Omega,\ t \in [0, T], \nonumber \\ & v_{tt}(t,x)-(a+b (\|\nabla u(t,x)\|_2^2+\|\nabla v(t,x)\|_2^2)^\gamma ) \Delta v(t,x)+\beta \Delta^2 v(t,x) \nonumber \\ & \quad+\delta|v_t(t,x)|^{\rho}v_t(t,x) =\mu|v(t,x)|^{\alpha}v(t,x), \quad x \in \Omega,\ t \in [0, T], \tag*{(1.1)} \\ & u(0,x)=u_0(x),\quad u_t(0,x)=u_1(x), \quad x \in \Omega, \nonumber \\ & v(0,x)=v_0(x),\quad v_t(0,x)=v_1(x), \quad x \in \Omega, \nonumber \\ & u|_{\partial \Omega}=v|_{\partial \Omega}=0, \nonumber \end{align} where $T >0$, $\alpha > 0$, $\rho \geq 0$, $\delta >0$, $\mu \in \Bbb R$, $a+b \geq 0$, $b \geq 0$, $\gamma \geq 1 $ and $$ \|\nabla u\|^2_2 =\sum_{i=1}^N \int_\Omega|\frac{\partial u}{\partial x_i}(t,x)|^2dx, \quad u_t=\frac{\partial u}{\partial t}\quad\hbox{and}\quad \Delta u=\sum_{i=1}^N \frac{\partial^2u}{\partial x_i^2}. $$

Article information

Differential Integral Equations, Volume 14, Number 12 (2001), 1421-1440.

First available in Project Euclid: 21 December 2012

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35L70: Nonlinear second-order hyperbolic equations
Secondary: 35B35: Stability 35L15: Initial value problems for second-order hyperbolic equations 35L20: Initial-boundary value problems for second-order hyperbolic equations 35L55: Higher-order hyperbolic systems


Park, Jong Yeoul; Bae, Jeong Ja. On solutions of nondegenerate wave equations with nonlinear damping terms. Differential Integral Equations 14 (2001), no. 12, 1421--1440. https://projecteuclid.org/euclid.die/1356123004

Export citation