Abstract
We prove that every eigenvalue of a Robin problem with boundary parameter $\alpha$ on a sufficiently smooth domain behaves asymptotically like $-\alpha^2$ as $\alpha \to \infty$. This generalizes an existing result for the first eigenvalue.
Citation
Daniel Daners. James B. Kennedy. "On the asymptotic behaviour of the eigenvalues of a Robin problem." Differential Integral Equations 23 (7/8) 659 - 669, July/August 2010. https://doi.org/10.57262/die/1356019189
Information