July/August 2010 On the asymptotic behaviour of the eigenvalues of a Robin problem
Daniel Daners, James B. Kennedy
Differential Integral Equations 23(7/8): 659-669 (July/August 2010). DOI: 10.57262/die/1356019189

Abstract

We prove that every eigenvalue of a Robin problem with boundary parameter $\alpha$ on a sufficiently smooth domain behaves asymptotically like $-\alpha^2$ as $\alpha \to \infty$. This generalizes an existing result for the first eigenvalue.

Citation

Download Citation

Daniel Daners. James B. Kennedy. "On the asymptotic behaviour of the eigenvalues of a Robin problem." Differential Integral Equations 23 (7/8) 659 - 669, July/August 2010. https://doi.org/10.57262/die/1356019189

Information

Published: July/August 2010
First available in Project Euclid: 20 December 2012

zbMATH: 1240.35370
MathSciNet: MR2654263
Digital Object Identifier: 10.57262/die/1356019189

Subjects:
Primary: 35B40 , 35J05 , 35P15

Rights: Copyright © 2010 Khayyam Publishing, Inc.

Vol.23 • No. 7/8 • July/August 2010
Back to Top