## Communications in Mathematical Physics

- Comm. Math. Phys.
- Volume 150, Number 1 (1992), 109-136.

### Quantum Knizhnik-Zamolodchikov equations and affine root systems

#### Article information

**Source**

Comm. Math. Phys., Volume 150, Number 1 (1992), 109-136.

**Dates**

First available in Project Euclid: 28 December 2004

**Permanent link to this document**

https://projecteuclid.org/euclid.cmp/1104251785

**Mathematical Reviews number (MathSciNet)**

MR1188499

**Zentralblatt MATH identifier**

0849.17025

**Subjects**

Primary: 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

Secondary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23] 81R10: Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, $W$-algebras and other current algebras and their representations [See also 17B65, 17B67, 22E65, 22E67, 22E70]

#### Citation

Cherednik, Ivan. Quantum Knizhnik-Zamolodchikov equations and affine root systems. Comm. Math. Phys. 150 (1992), no. 1, 109--136. https://projecteuclid.org/euclid.cmp/1104251785