Banach Journal of Mathematical Analysis

Relatively compact sets in variable-exponent Lebesgue spaces

Rovshan Bandaliyev and Przemysław Górka

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study totally bounded sets in variable Lebesgue spaces. The full characterization of this kind of sets is given for the case of variable Lebesgue space on metric measure spaces. Furthermore, the sufficient conditions for compactness are shown without assuming log-Hölder continuity of the exponent.

Article information

Banach J. Math. Anal., Volume 12, Number 2 (2018), 331-346.

Received: 31 January 2017
Accepted: 12 May 2017
First available in Project Euclid: 19 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 28C99: None of the above, but in this section
Secondary: 46B50: Compactness in Banach (or normed) spaces 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Lebesgue spaces with variable exponent metric measure spaces Riesz–Kolmogorov theorem


Bandaliyev, Rovshan; Górka, Przemysław. Relatively compact sets in variable-exponent Lebesgue spaces. Banach J. Math. Anal. 12 (2018), no. 2, 331--346. doi:10.1215/17358787-2017-0039.

Export citation


  • [1] T. Adamowicz, P. Harjulehto, and P. Hästö, Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces, Math. Scand. 116 (2015), no. 1, 5–22.
  • [2] Adimurthi and P. Górka, Global Trudinger–Moser inequality on metric spaces, Math. Inequal. Appl. 19 (2016), no. 3, 1131–1139.
  • [3] A. Clop and V. Cruz, Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 91–113.
  • [4] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Heidelberg, 2013.
  • [5] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Berlin, 2011.
  • [6] L. Diening, P. Hästö, and A. Nekvinda, “Open problems in variable exponent Lebesgue and Sobolev spaces” in Proceeding of the International Conference on Function Spaces, Differential Operators and Nonlinear Analysis (Milovy, 2004), Math. Inst. Acad. Sci. Czech Rep., Prague, 2005, 38–58.
  • [7] X. Fan and D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), no. 2, 424–446.
  • [8] A. Fiorenza and J. M. Rakotoson, Relative rearrangement and Lebesgue spaces $L^{p(\cdot)}$ with variable exponent, J. Math. Pures Appl. (9) 88 (2007), no. 6, 506–521.
  • [9] T. Futamura, Y. Mizuta, and T. Shimomura, Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 495–522.
  • [10] M. Gaczkowski, P. Górka, and D. Pons, Sobolev spaces with variable exponents on complete manifolds, J. Funct. Anal. 270 (2016), no. 4, 1379–1415.
  • [11] P. Górka, In metric-measure spaces Sobolev embedding is equivalent to a lower bound for the measure, Potential Anal. 47 (2017), no. 1, 13–19.
  • [12] P. Górka and A. Macios, The Riesz-Kolmogorov theorem on metric spaces, Miskolc Math. Notes 15 (2014), no. 2, 459–465.
  • [13] P. Górka and A. Macios, Almost everything you need to know about relatively compact sets in variable Lebesgue spaces, J. Funct. Anal. 269 (2015), no. 7, 1925–1949.
  • [14] P. Górka and H. Rafeiro, From Arzelà–Ascoli to Riesz–Kolmogorov, Nonlinear Anal. 144 (2016), 23–31; Correction, Nonlinear Anal. 149 (2017), 177–179.
  • [15] P. Górka and H. Rafeiro, Light side of compactness in Lebesgue spaces: Sudakov theorem, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 1, 135–139.
  • [16] P. Harjulehto, P. Hästö, and V. Latvala, Sobolev embeddings in metric measure spaces with variable dimension, Math. Z. 254 (2006), no. 3, 591–609.
  • [17] P. Harjulehto, P. Hästö, and M. Pere, Variable exponent Lebesgue spaces on metric spaces: The Hardy–Littlewood maximal operator, Real Anal. Exchange 30 (2004), no. 1, 87–103.
  • [18] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer, New York, 2001.
  • [19] A. Kałamajska, On compactness of embedding for Sobolev spaces defined on metric spaces, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 1, 123–132.
  • [20] A. N. Kolmogorov, “Uber Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel” in Selected works of A. N. Kolmogorov, Vol. I, Kluwer, Dordrecht, 1991, 147–150.
  • [21] V. G. Krotov, Compactness criteria in the spaces $L_{p},p>0$ (in Russian), Mat. Sb. 203 (2012), no. 7, 129–148; English translation in Sb. Math. 203 (2012), no. 7–8, 1045–1064.
  • [22] F. Li, Z. Li, and L. Pi, Variable exponent functionals in image restoration, Appl. Math. Comput. 216 (2010), no. 3, 870–882.
  • [23] Y. Mizuta and T. Shimomura, Continuity of Sobolev functions of variable exponent on metric spaces, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 6, 96–99.
  • [24] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665–3748.
  • [25] H. Rafeiro, Kolmogorov compactness criterion in variable exponent Lebesgue spaces, Proc. A. Razmadze Math. Inst. 150 (2009), 105–113.
  • [26] M. Riesz, Sur les ensembles compacts de fonctions sommables, Acta. Szeged Sect. Math. 6 (1933), 136–142.
  • [27] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000.
  • [28] V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity theory (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 50 (1986), no. 4, 675–710; English translation in Math. USSR-Izv. 29 (1987), no. 1, 33–66.