• Bernoulli
  • Volume 19, Number 2 (2013), 610-632.

Total variation error bounds for geometric approximation

Erol A. Peköz, Adrian Röllin, and Nathan Ross

Full-text: Open access


We develop a new formulation of Stein’s method to obtain computable upper bounds on the total variation distance between the geometric distribution and a distribution of interest. Our framework reduces the problem to the construction of a coupling between the original distribution and the “discrete equilibrium” distribution from renewal theory. We illustrate the approach in four non-trivial examples: the geometric sum of independent, non-negative, integer-valued random variables having common mean, the generation size of the critical Galton–Watson process conditioned on non-extinction, the in-degree of a randomly chosen node in the uniform attachment random graph model and the total degree of both a fixed and randomly chosen node in the preferential attachment random graph model.

Article information

Bernoulli, Volume 19, Number 2 (2013), 610-632.

First available in Project Euclid: 13 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

discrete equilibrium distribution geometric distribution preferential attachment model Stein’s method Yaglom’s theorem


Peköz, Erol A.; Röllin, Adrian; Ross, Nathan. Total variation error bounds for geometric approximation. Bernoulli 19 (2013), no. 2, 610--632. doi:10.3150/11-BEJ406.

Export citation


  • [1] Aldous, D. (1989). Probability Approximations via the Poisson Clumping Heuristic. Applied Mathematical Sciences 77. New York: Springer.
  • [2] Barbour, A.D. and Čekanavičius, V. (2002). Total variation asymptotics for sums of independent integer random variables. Ann. Probab. 30 509–545.
  • [3] Barbour, A.D. and Grübel, R. (1995). The first divisible sum. J. Theoret. Probab. 8 39–47.
  • [4] Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford Studies in Probability 2. New York: Oxford Univ. Press.
  • [5] Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001). The degree sequence of a scale-free random graph process. Random Structures Algorithms 18 279–290.
  • [6] Brown, M. (1990). Error bounds for exponential approximations of geometric convolutions. Ann. Probab. 18 1388–1402.
  • [7] Chen, L.H.Y., Goldstein, L. and Shao, Q.M. (2011). Normal Approximation by Stein’s Method. Probability and Its Applications (New York). Heidelberg: Springer.
  • [8] Daly, F. (2008). Upper bounds for Stein-type operators. Electron. J. Probab. 13 566–587.
  • [9] Daly, F. (2010). Stein’s method for compound geometric approximation. J. Appl. Probab. 47 146–156.
  • [10] Ford, E. (2009). Barabási–Albert random graphs, scale-free distributions and bounds for approximation through Stein’s method. Ph.D. thesis. Univ. Oxford.
  • [11] Goldstein, L. (2009). Personal communication and unpublished notes. In Stein Workshop, January 2009, Singapore.
  • [12] Goldstein, L. and Reinert, G. (1997). Stein’s method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab. 7 935–952.
  • [13] Kalashnikov, V. (1997). Geometric Sums: Bounds for Rare Events with Applications: Risk Analysis, Reliability, Queueing. Mathematics and Its Applications 413. Dordrecht: Kluwer Academic.
  • [14] Lalley, S.P. and Zheng, X. (2011). Occupation statistics of critical branching random walks in two or higher dimensions. Ann. Probab. 39 327–368.
  • [15] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of $L\log L$ criteria for mean behavior of branching processes. Ann. Probab. 23 1125–1138.
  • [16] Mattner, L. and Roos, B. (2007). A shorter proof of Kanter’s Bessel function concentration bound. Probab. Theory Related Fields 139 191–205.
  • [17] Peköz, E.A. (1996). Stein’s method for geometric approximation. J. Appl. Probab. 33 707–713.
  • [18] Peköz, E.A. and Röllin, A. (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Probab. 39 587–608.
  • [19] Peköz, E., Röllin, A. and Ross, N. (2011). Degree asymptotics with rates for preferential attachment random graphs. Preprint. Available at arXiv:org/abs/1108.5236.
  • [20] Phillips, M.J. and Weinberg, G.V. (2000). Non-uniform bounds for geometric approximation. Statist. Probab. Lett. 49 305–311.
  • [21] Röllin, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11 1115–1128.
  • [22] Röllin, A. (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron. J. Probab. 13 756–776.
  • [23] Ross, N. (2011). Fundamentals of Stein’s method. Probab. Surveys 8 210–293.
  • [24] Ross, S. and Peköz, E. (2007). A Second Course in Probability. Boston, MA:
  • [25] Yaglom, A.M. (1947). Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.) 56 795–798.