Bernoulli

  • Bernoulli
  • Volume 16, Number 4 (2010), 909-925.

Tightness for the interface of the one-dimensional contact process

Enrique Andjel, Thomas Mountford, Leandro P.R. Pimentel, and Daniel Valesin

Full-text: Open access

Abstract

We consider a symmetric, finite-range contact process with two types of infection; both have the same (supercritical) infection rate and heal at rate 1, but sites infected by Infection 1 are immune to Infection 2. We take the initial configuration where sites in $(−∞, 0]$ have Infection 1 and sites in $[1, ∞)$ have Infection 2, then consider the process $ρ_t$ defined as the size of the interface area between the two infections at time $t$. We show that the distribution of $ρ_t$ is tight, thus proving a conjecture posed by Cox and Durrett in [Bernoulli 1 (1995) 343–370].

Article information

Source
Bernoulli, Volume 16, Number 4 (2010), 909-925.

Dates
First available in Project Euclid: 18 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.bj/1290092889

Digital Object Identifier
doi:10.3150/09-BEJ236

Mathematical Reviews number (MathSciNet)
MR2759162

Zentralblatt MATH identifier
1209.60053

Keywords
contact process interfaces

Citation

Andjel, Enrique; Mountford, Thomas; Pimentel, Leandro P.R.; Valesin, Daniel. Tightness for the interface of the one-dimensional contact process. Bernoulli 16 (2010), no. 4, 909--925. doi:10.3150/09-BEJ236. https://projecteuclid.org/euclid.bj/1290092889


Export citation

References

  • [1] Bezuidenhout, C. and Gray, L. (1994). Critical attractive spin systems. Ann. Probab. 22 1160–1194.
  • [2] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1486.
  • [3] Cox, J. and Durrett, R. (1995). Hybrid zones and voter model interfaces. Bernoulli 1 343–370.
  • [4] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999–1040.
  • [5] Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Belmont, CA: Wadsworth.
  • [6] Durrett, R. and Møller, A. (1991). Complete convergence theorem for a competitive model. Probab. Theory Related Fields 88 121–136.
  • [7] Durrett, R. and Swindle, G. (1991). Are there bushes in a forest? Stochastic Process. Appl. 37 19–31.
  • [8] Liggett, T. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. New York: Springer.
  • [9] Liggett, T., Schonmann, R. and Stacy, A. (1997). Domination by product measures. Ann. Probab. 25 71–95.
  • [10] Mountford, T. and Sweet, T. (2000). An extension of Kuczek’s argument to nonnearest neighbor contact process. J. Theoret. Probab. 13 1061–1081.