Open Access
February 2008 A simple adaptive estimator of the integrated square of a density
Evarist Giné, Richard Nickl
Bernoulli 14(1): 47-61 (February 2008). DOI: 10.3150/07-BEJ110

Abstract

Given an i.i.d. sample $X_1, …, X_n$ with common bounded density $f_0$ belonging to a Sobolev space of order $α$ over the real line, estimation of the quadratic functional $∫_ℝf_0^2(x) \mathrm{d}x$ is considered. It is shown that the simplest kernel-based plug-in estimator $$\frac{2}{n(n-1)h_{n}} \sum_{1\leq i<j\leq n} K\biggl(\frac {X_{i}-X_{j}}{h_{n}}\biggr)$$ is asymptotically efficient if $α>1/4$ and rate-optimal if $α≤1/4$. A data-driven rule to choose the bandwidth $h_n$ is then proposed, which does not depend on prior knowledge of $α$, so that the corresponding estimator is rate-adaptive for $α≤1/4$ and asymptotically efficient if $α>1/4$.

Citation

Download Citation

Evarist Giné. Richard Nickl. "A simple adaptive estimator of the integrated square of a density." Bernoulli 14 (1) 47 - 61, February 2008. https://doi.org/10.3150/07-BEJ110

Information

Published: February 2008
First available in Project Euclid: 8 February 2008

zbMATH: 1155.62025
MathSciNet: MR2401653
Digital Object Identifier: 10.3150/07-BEJ110

Keywords: adaptive estimation , kernel density estimator , quadratic functional

Rights: Copyright © 2008 Bernoulli Society for Mathematical Statistics and Probability

Vol.14 • No. 1 • February 2008
Back to Top