Bulletin of the Belgian Mathematical Society - Simon Stevin

The order of the commutator on $SU(3)$ and an application to gauge groups

A. Kono and S. Theriault

Full-text: Open access

Abstract

We show that the commutator map on $SU(3)$ has order $2^{3}\cdot 3\cdot 5$. As an application, we give an upper bound on the number of homotopy types of gauge groups for principal $SU(3)$-bundles over an $n$-sphere.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 20, Number 2 (2013), 359-370.

Dates
First available in Project Euclid: 23 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1369316550

Digital Object Identifier
doi:10.36045/bbms/1369316550

Mathematical Reviews number (MathSciNet)
MR3082770

Zentralblatt MATH identifier
1270.55006

Subjects
Primary: 55P15: Classification of homotopy type 57T99: None of the above, but in this section
Secondary: 54C35: Function spaces [See also 46Exx, 58D15]

Keywords
$SU(3)$ commutator order gauge group homotopy type

Citation

Kono, A.; Theriault, S. The order of the commutator on $SU(3)$ and an application to gauge groups. Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 2, 359--370. doi:10.36045/bbms/1369316550. https://projecteuclid.org/euclid.bbms/1369316550


Export citation