Bulletin of the Belgian Mathematical Society - Simon Stevin

Spectres en diagramme dans les catégories modèles

Olivier Renaudin

Full-text: Open access

Abstract

We extend the notion of diagram spectra of M. A. Mandell, J. P. May, S. Schwede, B. Shipley to general model categories to obtain a stabilization process with respect to any set of objects. Following M. Hovey, we discuss the existence and some properties of diagram spectra, such as monoidal structures, invertibility, idempotency, homotopy invariance and functoriality. We end with some comparisons between categories of spectra associated to different diagrams.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 13, Number 1 (2006), 1-30.

Dates
First available in Project Euclid: 19 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1148059328

Digital Object Identifier
doi:10.36045/bbms/1148059328

Zentralblatt MATH identifier
1123.18011

Subjects
Primary: 18G55: Homotopical algebra 55P42: Stable homotopy theory, spectra

Keywords
catégories modèles stabilisation spectres

Citation

Renaudin, Olivier. Spectres en diagramme dans les catégories modèles. Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 1, 1--30. doi:10.36045/bbms/1148059328. https://projecteuclid.org/euclid.bbms/1148059328


Export citation