Bulletin (New Series) of the American Mathematical Society

Review: Bernard Maskit, Kleinian groups

Albert Marden

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 22, Number 2 (1990), 310-315.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183555627

Citation

Marden, Albert. Review: Bernard Maskit, Kleinian groups. Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 2, 310--315. https://projecteuclid.org/euclid.bams/1183555627


Export citation

References

  • 1. L. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413-429.
  • 2. J. Cannon, D. Epstein, D. Holt, M. Patterson and W. Thurston, Word processing and group theory, preprint.
  • 3. D. B. A. Epstein, Computers, groups, and hyperbolic geometry, Astérisque 163-164 (1988), 9-29.
  • 4. D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Proc. of the Warwick Symposium, Cambridge Univ. Press, 1986, pp. 113-236.
  • 5. R. Kulkarni and P. Shalen, On Ahlfors finiteness theorem, preprint.
  • 6. K. McMullen, Iteration on Teichmüller space, preprint.
  • 7. A. Marden, The geometry of finitely generated Kleinian groups, Ann. of Math. 99 (1974), 383-462.
  • 8. A. Marden, Geometrically finite Kleinian groups and their deformation spaces, in Discrete groups and automorphic functions (W. Harvey, ed.), Academic Press, New York, 1977, pp. 259-293.
  • 9. S. J. Patterson, Measures on limit sets of Kleinian groups, in analytic and geometric aspects of hyperbolic space (D. B. A. Epstein, ed.), London Math. Soc. Notes 111 (1987), 281-323.
  • 10. P. Scott, Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc. 6 (1973), 437-440.
  • 11. W. P. Thurston, Three-dimensional manifolds, Kleinian groups, and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
  • 12. W. P. Thurston, Hyperbolic structures on 3-manifolds I: Deformations of a cylindricalmanifold, Ann. of Math. 124 (1986), 203-246.
  • 13. P. Tukia, A rigidity theorem for Möbius groups, Invent. Math. (to appear).