Bulletin (New Series) of the American Mathematical Society

On problems of U. Simon concerning minimal submanifolds of the nearly Kaehler 6-sphere

Franki Dillen, Leopold Verstraelen, and Luc Vrancken

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 19, Number 2 (1988), 433-438.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183554723

Mathematical Reviews number (MathSciNet)
MR932322

Zentralblatt MATH identifier
0655.53052

Subjects
Primary: 53C40: Global submanifolds [See also 53B25] 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.) 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]

Citation

Dillen, Franki; Verstraelen, Leopold; Vrancken, Luc. On problems of U. Simon concerning minimal submanifolds of the nearly Kaehler 6-sphere. Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 433--438. https://projecteuclid.org/euclid.bams/1183554723


Export citation

References

  • 1. E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 111-125.
  • 2. F. Dillen, L. Verstraelen and L. Vrancken, On almost complex surfaces of the nearly Kaehler 6-sphere. II, Kōdai Math. J. 10 (1987), 261-271.
  • 3. F. Dillen, Classification of totally real 3-dimensional submanifolds of $S\sp 6(1)$ with K$\ge 1/16$, preprint.
  • 4. F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken, On almost complex surfaces of the nearly Kaehler 6-sphere. I, Collection of Scientific Papers, Faculty of Science, Univ. of Kragujevac 8 (1987), 5-13.
  • 5. F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken, On totally real 3-dimensional submanifolds of the nearly Kaehler 6-sphere, Proc. Amer. Math. Soc. 99 (1987), 741-749.
  • 6. F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken, On totally real surfaces of the nearly Kaehler 6-sphere, Geom. Dedicata (to appear).
  • 7. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
  • 8. N. Ejiri, Totally real submanifolds in a 6-sphere, preprint.
  • 9. A. Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965), 273-287.
  • 10. A. Gray, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.
  • 11. R. Harvey and H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
  • 12. M. Kozlowski and U. Simon, Minimal immersions of 2-manifolds into spheres, Math. Z. 186 (1984), 377-382.
  • 13. K. Mashimo, Homogeneous totally real submanifolds of S6, Tsukuba J. Math. 9 (1985), 185-202.
  • 14. A. Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of Math. (2) 121 (1985), 377-382.
  • 15. K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kōdai Math. J. 6 (1983), 174-185.
  • 16. M. Spivak, A comprehensive introduction to differential geometry, vol. IV, Publish or Perish, Berkeley, 1979.