Bulletin (New Series) of the American Mathematical Society

Surgery and bordism invariants

Michael Weiss

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 9, Number 2 (1983), 223-226.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183551121

Mathematical Reviews number (MathSciNet)
MR707962

Zentralblatt MATH identifier
0523.57022

Subjects
Primary: 57R67: Surgery obstructions, Wall groups [See also 19J25] 55N22: Bordism and cobordism theories, formal group laws [See also 14L05, 19L41, 57R75, 57R77, 57R85, 57R90]
Secondary: 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67] 18G35: Chain complexes [See also 18E30, 55U15]

Citation

Weiss, Michael. Surgery and bordism invariants. Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 223--226. https://projecteuclid.org/euclid.bams/1183551121


Export citation

References

  • 1. W. Browder, The Kervaire invariant of framed manifolds and its generalisations, Ann. of Math. (2) 90 (1969), 157-186.
  • 2. E. H. Brown, Jr., Generalisations of the Kervaire invariant, Ann. of Math. (2) 95 (1972), 368-383.
  • 3. A. S. Mischenko, Homotopy invariants of non-simply-connected manifolds. III: Higher signatures, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1316-1355.
  • 4. A. A. Ranicki, The algebraic theory of surgery. I, II, Proc. Lond. Math. Soc. (3) 40 (1980), 87-283.