Bulletin (New Series) of the American Mathematical Society

Fast recursion formula for weight multiplicities

R. V. Moody and J. Patera

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 7, Number 1 (1982), 237-242.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 17B10: Representations, algebraic theory (weights)
Secondary: 22E46: Semisimple Lie groups and their representations 17B20: Simple, semisimple, reductive (super)algebras


Moody, R. V.; Patera, J. Fast recursion formula for weight multiplicities. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 237--242. https://projecteuclid.org/euclid.bams/1183549053

Export citation


  • 1. H. Freudenthal, Zur Berechnung der Charaktere der halbfachen Lieschen Gruppen. II, Koninkl. Nederl. Akademie, Proceedings Ser. A 57, No. 5 (1954), 487-491.
  • 2. R. C. King and H. H. Al-Qubanchi, The Weyl group and weight multiplicities of the exceptional Lie groups, J. Phys. A 14 (1981), 51-75.
  • 3. H. Freudenthal and H. deVries, Linear Lie groups, Academic Press, New York, 1969.
  • 4. B. Kolman and J. A. Belinfante, Survey of Lie groups and Lie algebras with applications and computational methods, SIAM, Philadelphia, 1972.
  • 5. V. K. Agrawala and J. G. Belinfante, Weight diagrams for Lie group representations: A computer implementation of Freudenthal's algorithm in ALGOL and FORTRAN, BIT 9 (1969), 301-304.
  • 6. W. McKay, J. Patera and D. Sankoff, The computation of branching rules for representations of semisimple Lie algebras, Computers in Non-Associative Rings and Algebras (R. Beck and B. Kolman, eds.), Academic Press, New York, 1977.
  • 7. M. Bremner, R. Funk and R. Moody, Implementation of the fast recursion formula in PASCAL.
  • 8. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4-6, Hermann, Paris, 1968.