Bayesian Analysis

High Dimensional Single-Index Bayesian Modeling of Brain Atrophy

Arkaprava Roy, Subhashis Ghosal, and Kingshuk Roy Choudhury

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

We propose a model of brain atrophy as a function of high-dimensional genetic information and low-dimensional covariates such as gender, age, APOE gene, and disease status. A nonparametric single-index Bayesian model of high-dimension is proposed to model the relationship using B-spline series prior on the unknown functions and Dirichlet process scale mixture of centered normal prior to the distributions of the random effects. The posterior rate of contraction without the random effect is established for a fixed number of regions and time points with increasing sample size. We implement an efficient computation algorithm through a Hamiltonian Monte Carlo (HMC) algorithm. The performance of the proposed Bayesian method is compared with the corresponding least square estimator in the linear model with horseshoe prior, Least Absolute Shrinkage and Selection Operator (LASSO) and Smoothly Clipped Absolute Deviation (SCAD) penalization on the high-dimensional covariates. The proposed Bayesian method is applied to a dataset on volumes of brain regions recorded over multiple visits of 748 individuals using 620,901 SNPs and 6other covariates for each individual, to identify factors associated with brain atrophy.

Article information

Source
Bayesian Anal., Advance publication (2018), 21 pages.

Dates
First available in Project Euclid: 4 November 2019

Permanent link to this document
https://projecteuclid.org/euclid.ba/1572858052

Digital Object Identifier
doi:10.1214/19-BA1186

Keywords
ADNI Bayesian Genome-wide association study (GWAS) Hamiltonian Monte Carlo high-dimensional data single-index Model spike-and-slab prior

Rights
Creative Commons Attribution 4.0 International License.

Citation

Roy, Arkaprava; Ghosal, Subhashis; Choudhury, Kingshuk Roy. High Dimensional Single-Index Bayesian Modeling of Brain Atrophy. Bayesian Anal., advance publication, 4 November 2019. doi:10.1214/19-BA1186. https://projecteuclid.org/euclid.ba/1572858052


Export citation

References

  • Ahveninen, J., Jääskeläinen, I. P., Belliveau, J. W., Hämäläinen, M., Lin, F., and Raij, T. (2012). “Dissociable influences of auditory object vs. spatial attention on visual system oscillatory activity.” Public Library of Science One, 7(6): e38511.
  • Alquier, P. and Biau, G. (2013). “Sparse single-index model.” Journal of Machine Learning Research, 14: 243–280.
  • Antoniadis, A., Grégoire, G., and McKeague, I. W. (2004). “Bayesian estimation In single-index models.” Statistica Sinica, 14: 1147–1164.
  • Breiderhoff, T., Christiansen, G. B., Pallesen, L. T., Vaegter, C., Nykjaer, A., Holm, M. M., Glerup, S., and Willnow, T. E. (2013). “Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic depression and fear extinction.” Public Library of Science one, 8(9): e75006.
  • Burke, J. V. (2014). https://sites.math.washington.edu/~burke/crs/408/lectures/L3-Multivariable-Calc-Review.pdf.
  • Burns, L., Minster, R., Demirci, F., Barmada, M., Ganguli, M., Lopez, O., DeKosky, S., and Kamboh, M. (2011). “Replication study of genome-wide associated SNPs with late-onset Alzheimer’s disease.” American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(4): 507–512.
  • Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator for sparse signals.” Biometrika, 97(2): 465–480.
  • Carvill, G. L., McMahon, J. M., Schneider, A., Zemel, M., Myers, C. T., Saykally, J., Nguyen, J., Robbiano, A., Zara, F., and Specchio, N. (2015). “Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic-atonic seizures.” The American Journal of Human Genetics, 96(5): 808–815.
  • De Boor, C. (2001). “A practical guide to splines, revised Edition.” Vol. 27 of Applied Mathematical Sciences. Mechanical Sciences, year.
  • Dickson, H. M., Wilbur, A., Reinke, A. A., Young, M. A., and Vojtek, A. B. (2015). “Targeted inhibition of the Shroom3–Rho kinase protein–protein interaction circumvents Nogo66 to promote axon outgrowth.” BMC neuroscience, 16(1): 34.
  • Fan, J. and Li, R. (2001). “Variable selection via nonconcave penalized likelihood and its Oracle properties.” Journal of the American Statistical Association, 96(1).
  • Freudenberg-Hua, Y., Li, W., Abhyankar, A., Vacic, V., Cortes, V., Ben-Avraham, D., Koppel, J., Greenwald, B., Germer, S., and Consortium, T.-G. (2016). “Differential burden of rare protein truncating variants in Alzheimer’s disease patients compared to centenarians.” Human molecular genetics, 25(14): 3096–3105.
  • Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge University Press, Cambridge.
  • Himes, B. E., Sheppard, K., Berndt, A., Leme, A. S., Myers, R. A., Gignoux, C. R., Levin, A. M., Gauderman, W. J., Yang, J. J., and Mathias, R. A. (2013). “Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene.” Public Library of Science one, 8(2): e56179.
  • Hostage, C. A., Choudhury, K. R., Doraiswamy, P. M., and Petrella, J. R. (2014). “Mapping the effect of the Apolipoprotein E Genotype on 4-Year Atrophy Rates in an Alzheimer Disease–related Brain Network.” Radiology, 271(1).
  • Jones, G. L. (2008). http://users.stat.umn.edu/~galin/icsprar.pdf.
  • Lane, R. F., St George-Hyslop, P., Hempstead, B. L., Small, S. A., Strittmatter, S. M., and Gandy, S. (2012). “Vps10 family proteins and the retromer complex in aging-related neurodegeneration and diabetes.” Journal of Neuroscience, 32(41): 14080–14086.
  • Lee, J. H., Cheng, R., Vardarajan, B. N., Lantigua, R. A., Reyes-Dumeyer, D., Ortmann, W., Graham, R., Bhangale, T., Behrens, T., and Medrano, M. (2014). “SORBS2, SH3RF3, and NPHP1 modify age at onset in carriers of the G206A mutation in PSEN1 with familial Alzheimer’s disease.” Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10(4): P632.
  • Lin, J., Li, X., Yuan, F., Lin, L., Cook, C. L., Rao, C. V., and Lei, Z. (2010). “Genetic ablation of luteinizing hormone receptor improves the amyloid pathology in a mouse model of Alzheimer disease.” Journal of Neuropathology & Experimental Neurology, 69(3): 253–261.
  • Lin, K. A., Choudhury, K. R., Rathakrishnan, B. G., Marks, D. M., Petrella, J. R., Doraiswamy, P. M., Initiative, A. D. N., et al. (2015). “Marked gender differences in progression of mild cognitive impairment over 8 years.” Alzheimer’s & dementia: translational research & clinical interventions, 1(2): 103–110.
  • Lin, P.-I., Kuo, P.-H., Chen, C.-H., Wu, J.-Y., Gau, S. S., Wu, Y.-Y., and Liu, S.-K. (2013). “Runs of homozygosity associated with speech delay in autism in a taiwanese han population: evidence for the recessive model.” Public Library of Science one, 8(8): e72056.
  • Luo, S. and Ghosal, S. (2016). “Forward selection and estimation in high dimensional single index models.” Stat Methodology, 33: 172–179.
  • Neal, R. M. (2011). “MCMC using Hamiltonian dynamics.” Handbook of Markov Chain Monte Carlo, 2(11): 2.
  • Nho, K., Kim, S., Risacher, S. L., Ramanan, V. K., Shen, L., Foroud, T. M., Gibbons, L. E., Crane, P. K., Weiner, M. W., and Green, R. C. (2015). “Genome-wide rare variant analysis identifies candidate genes significantly associated with composite scores for memory.” Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 11(7): 251–252.
  • Niceta, M., Stellacci, E., Gripp, K. W., Zampino, G., Kousi, M., Anselmi, M., Traversa, A., Ciolfi, A., Stabley, D., and Bruselles, A. (2015). “Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a Down syndrome-like facies.” The American Journal of Human Genetics, 96(5): 816–825.
  • Orsini, C. A., Setlow, B., DeJesus, M., Galaviz, S., Loesch, K., Ioerger, T., and Wallis, D. (2016). “Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction.” Molecular genetics & genomic medicine, 4(3): 322–343.
  • Peng, H. and Huang, T. (2011). “Penalized least squares for single index models.” Journal of Statistical Planning and Inference, 141: 1362–1379.
  • Petrella, J. (2013). “Neuroimaging and the search for a cure for Alzheimer disease.” Radiology, 269: 671–691.
  • Radchenko, P. (2015). “High dimensional single index models.” Journal of Multivariate Analysis, 139: 266–282.
  • Roy, A., Ghosal, S., and Choudhury, K. R. For The Alzheimer’s Disease Neuroimaging Initiative (2019). “Supplementary Materials of High-dimensional single-index Bayesian modeling of brain atrophy.” Bayesian Analysis.
  • Schriemer, D., Sribudiani, Y., IJpma, A., Natarajan, D., MacKenzie, K. C., Metzger, M., Binder, E., Burns, A. J., Thapar, N., and Hofstra, R. M. (2016). “Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes.” Developmental biology, 416(1): 255–265.
  • Tabarki, B., AlMajhad, N., AlHashem, A., Shaheen, R., and Alkuraya, F. S. (2016). “Homozygous KCNMA1 mutation as a cause of cerebellar atrophy, developmental delay and seizures.” Human genetics, 135(11): 1295–1298.
  • Thompson, P., Hayashi, K., and deZubicaray G. (2003). “Dynamics of gray matter loss in Alzheimer’s disease.” Journal of Neuroscience, 23: 994–1005.
  • Tibshirani, R. (1996). “Regression shrinkage and selection via the Lasso.” Journal of the Royal Statistical Society B, 58: 267–288.
  • Wang, H. (2009). “Bayesian estimation and variable selection for single index models.” Computational Statistics and Data Analysis, 53: 2617–2627.
  • Wang, T., Xu, P., and Zhu, L. (2012). “Non-convex penalized estimation in high-dimensional models with single-index structure.” The Journal of Multivariate Analysis, 109: 221–235.
  • Yu, Y. and Ruppert, D. (2002). “Penalized spline estimation for partially linear single index models.” Journal of American Statistical Association, 97: 1042–1054.
  • Yung, Y. C., Stoddard, N. C., Mirendil, H., and Chun, J. (2015). “Lysophosphatidic acid signaling in the nervous system.” Neuron, 85(4): 669–682.
  • Zhang, Q., Gao, X., Li, C., Feliciano, C., Wang, D., Zhou, D., Mei, Y., Monteiro, P., Anand, M., and Itohara, S. (2016). “Impaired dendritic development and memory in Sorbs2 knock-out mice.” Journal of Neuroscience, 36(7): 2247–2260.
  • Zhu, L. and Zhu, L. (2009). “Nonconcave penalized inverse regression in single-index models with high dimensional predictors.” The Journal of Multivariate Analysis, 100(5): 862–875.

Supplemental materials