Open Access
VOL. 76 | 2018 Branching rules for symmetric hypergeometric polynomials
Jan Felipe van Diejen, Erdal Emsiz

Editor(s) Hitoshi Konno, Hidetaka Sakai, Junichi Shiraishi, Takao Suzuki, Yasuhiko Yamada

Adv. Stud. Pure Math., 2018: 125-153 (2018) DOI: 10.2969/aspm/07610125

Abstract

Starting from a recently found branching rule for the six-parameter family of symmetric Macdonald-Koornwinder polynomials, we arrive by degeneration at corresponding branching formulas for symmetric hypergeometric orthogonal polynomials of Wilson, continuous Hahn, Jacobi, Laguerre, and Hermite type.

Information

Published: 1 January 2018
First available in Project Euclid: 21 September 2018

zbMATH: 07039302
MathSciNet: MR3837921

Digital Object Identifier: 10.2969/aspm/07610125

Subjects:
Primary: 05E05 , 33C52

Keywords: branching rules , hypergeometric polynomials , symmetric functions

Rights: Copyright © 2018 Mathematical Society of Japan

PROCEEDINGS ARTICLE
29 PAGES


Back to Top