Analysis & PDE

  • Anal. PDE
  • Volume 7, Number 7 (2014), 1639-1648.

Resolvent estimates for the magnetic Schrödinger operator

Georgi Vodev

Full-text: Open access

Abstract

We prove optimal high-frequency resolvent estimates for self-adjoint operators of the form

G = Δ + i b ( x ) + i b ( x ) + V ( x )

on L2(n), n3, where b(x) and V(x) are large magnetic and electric potentials, respectively.

Article information

Source
Anal. PDE, Volume 7, Number 7 (2014), 1639-1648.

Dates
Received: 2 January 2014
Revised: 17 May 2014
Accepted: 30 June 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731606

Digital Object Identifier
doi:10.2140/apde.2014.7.1639

Mathematical Reviews number (MathSciNet)
MR3293446

Zentralblatt MATH identifier
1304.47004

Subjects
Primary: 47A10: Spectrum, resolvent

Keywords
magnetic potential resolvent estimates

Citation

Vodev, Georgi. Resolvent estimates for the magnetic Schrödinger operator. Anal. PDE 7 (2014), no. 7, 1639--1648. doi:10.2140/apde.2014.7.1639. https://projecteuclid.org/euclid.apde/1513731606


Export citation

References

  • F. Cardoso and G. Vodev, “Uniform estimates of the resolvent of the Laplace–Beltrami operator on infinite volume Riemannian manifolds. II”, Ann. Henri Poincaré 3:4 (2002), 673–691.
  • F. Cardoso, C. Cuevas, and G. Vodev, “High frequency resolvent estimates for perturbations by large long-range magnetic potentials and applications to dispersive estimates”, Ann. Henri Poincaré 14:1 (2013), 95–117.
  • F. Cardoso, C. Cuevas, and G. Vodev, “Resolvent estimates for perturbations by large magnetic potentials”, J. Math. Phys. 55:2 (2014), Article ID #023502.
  • F. Cardoso, C. Cuevas, and G. Vodev, “Semi-classical dispersive estimates”, Math. Z. 278:1–2 (2014), 251–277.
  • K. Datchev, “Quantitative limiting absorption principle in the semiclassical limit”, Geom. Funct. Anal. 24:3 (2014), 740–747.
  • M. B. Erdoğan, M. Goldberg, and W. Schlag, “Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions”, Forum Math. 21:4 (2009), 687–722.
  • H. Koch and D. Tataru, “Carleman estimates and absence of embedded eigenvalues”, Comm. Math. Phys. 267:2 (2006), 419–449.
  • I. Rodnianski and T. Tao, “Effective limiting absorption principles, and application”, preprint, 2011.