Analysis & PDE

  • Anal. PDE
  • Volume 10, Number 7 (2017), 1539-1612.

A vector field method for relativistic transport equations with applications

David Fajman, Jérémie Joudioux, and Jacques Smulevici

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We adapt the vector field method of Klainerman to the study of relativistic transport equations. First, we prove robust decay estimates for velocity averages of solutions to the relativistic massive and massless transport equations, without any compact support requirements (in x or v) for the distribution functions. In the second part of this article, we apply our method to the study of the massive and massless Vlasov–Nordström systems. In the massive case, we prove global existence and (almost) optimal decay estimates for solutions in dimensions n 4 under some smallness assumptions. In the massless case, the system decouples and we prove optimal decay estimates for the solutions in dimensions n 4 for arbitrarily large data, and in dimension 3 under some smallness assumptions, exploiting a certain form of the null condition satisfied by the equations. The 3-dimensional massive case requires an extension of our method and will be treated in future work.

Article information

Source
Anal. PDE, Volume 10, Number 7 (2017), 1539-1612.

Dates
Received: 28 April 2016
Revised: 13 April 2017
Accepted: 9 May 2017
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1510843556

Digital Object Identifier
doi:10.2140/apde.2017.10.1539

Mathematical Reviews number (MathSciNet)
MR3683922

Zentralblatt MATH identifier
1373.35046

Subjects
Primary: 35B40: Asymptotic behavior of solutions 35Q83: Vlasov-like equations 83C30: Asymptotic procedures (radiation, news functions, H-spaces, etc.)

Keywords
relativistic kinetic equations wave equation vector-field method asymptotic behaviour nonlinear stability Vlasov–Nordström system

Citation

Fajman, David; Joudioux, Jérémie; Smulevici, Jacques. A vector field method for relativistic transport equations with applications. Anal. PDE 10 (2017), no. 7, 1539--1612. doi:10.2140/apde.2017.10.1539. https://projecteuclid.org/euclid.apde/1510843556


Export citation

References

  • C. Bardos and P. Degond, “Global existence for the Vlasov–Poisson equation in $3$ space variables with small initial data”, Ann. Inst. H. Poincaré Anal. Non Linéaire 2:2 (1985), 101–118.
  • S. Calogero, “Spherically symmetric steady states of galactic dynamics in scalar gravity”, Classical Quantum Gravity 20:9 (2003), 1729–1741.
  • S. Calogero, “Global classical solutions to the 3D Nordström–Vlasov system”, Comm. Math. Phys. 266:2 (2006), 343–353.
  • S. Calogero and G. Rein, “Global weak solutions to the Nordström–Vlasov system”, J. Differential Equations 204:2 (2004), 323–338.
  • D. Christodoulou, The formation of shocks in 3-dimensional fluids, European Mathematical Society, Zürich, 2007.
  • D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series 41, Princeton University Press, 1993.
  • M. Crampin and F. A. E. Pirani, Applicable differential geometry, London Mathematical Society Lecture Note Series 59, Cambridge University Press, 1986.
  • M. Dafermos, “A note on the collapse of small data self-gravitating massless collisionless matter”, J. Hyperbolic Differ. Equ. 3:4 (2006), 589–598.
  • S. Friedrich, “Global Small Solutions of the Vlasov–Nordström System”, preprint, 2004.
  • V. Georgiev, “Decay estimates for the Klein–Gordon equation”, Comm. Partial Differential Equations 17:7-8 (1992), 1111–1139.
  • H. J. Hwang, A. Rendall, and J. J. L. Velázquez, “Optimal gradient estimates and asymptotic behaviour for the Vlasov–Poisson system with small initial data”, Arch. Ration. Mech. Anal. 200:1 (2011), 313–360.
  • S. Klainerman, “Global existence of small amplitude solutions to nonlinear Klein–Gordon equations in four space-time dimensions”, Comm. Pure Appl. Math. 38:5 (1985), 631–641.
  • S. Klainerman, “Uniform decay estimates and the Lorentz invariance of the classical wave equation”, Comm. Pure Appl. Math. 38:3 (1985), 321–332.
  • S. Klainerman, “Remark on the asymptotic behavior of the Klein–Gordon equation in $\mathbb{R}^{n+1}$”, Comm. Pure Appl. Math. 46:2 (1993), 137–144.
  • S. Klainerman and F. Nicolò, The evolution problem in general relativity, Progress in Mathematical Physics 25, Birkhäuser, Boston, 2003.
  • P. G. LeFloch and Y. Ma, “The global nonlinear stability of Minkowski space for self-gravitating massive fields”, Comm. Math. Phys. 346:2 (2016), 603–665.
  • E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 1997.
  • H. Lindblad and I. Rodnianski, “The global stability of Minkowski space-time in harmonic gauge”, Ann. of Math. $(2)$ 171:3 (2010), 1401–1477.
  • C. S. Morawetz, “The limiting amplitude principle”, Comm. Pure Appl. Math. 15 (1962), 349–361.
  • C. S. Morawetz, “Time decay for the nonlinear Klein–Gordon equations”, Proc. Roy. Soc. Ser. A 306 (1968), 291–296.
  • C. Pallard, “On global smooth solutions to the 3D Vlasov–Nordström system”, Ann. Inst. H. Poincaré Anal. Non Linéaire 23:1 (2006), 85–96.
  • G. Rein and A. D. Rendall, “Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data”, Comm. Math. Phys. 150:3 (1992), 561–583. Correction in 176:2 (1996), 475–478.
  • H. Ringström, On the topology and future stability of the universe, Oxford University Press, 2013.
  • O. Sarbach and T. Zannias, “The geometry of the tangent bundle and the relativistic kinetic theory of gases”, Classical Quantum Gravity 31:8 (2014), art. id. 085013.
  • O. Sarbach and T. Zannias, “Tangent bundle formulation of a charged gas”, pp. 192–207 in Recent developments on physics in strong gravitational fields, V: Leopoldo García-Colín Mexican Meeting on Mathematical and Experimental Physics (México City, 2013), edited by A. Macías and M. Maceda, American Institute of Physics Conference Series 1577, AIP Publishing, Melville, NY, 2014.
  • J. Schaeffer, “A small data theorem for collisionless plasma that includes high velocity particles”, Indiana Univ. Math. J. 53:1 (2004), 1–34.
  • J. Smulevici, “Small data solutions of the Vlasov–Poisson system and the vector field method”, Ann. PDE 2:2 (2016), art. id. 11.
  • M. Taylor, “The global nonlinear stability of Minkowski space for the massless Einstein–Vlasov system”, Ann. PDE 3:1 (2017), art. id. 9.
  • C. Villani, “Landau damping”, lecture notes for a course given in Cotonou, Benin and in CIRM, 2010, hook http://cedricvillani.org/wp-content/uploads/2012/08/B13.Landau.pdf \posturlhook.
  • Q. Wang, “Global stability of Minkowski space for massive scalar fields”, talk given at the conference "General Relativity: A celebration of the 100th anniversary", Institut Henri Poincaré, November 2015, hook https://philippelefloch.files.wordpress.com/2015/11/2015-ihp-qianwang.pdf \posturlhook. Video available at https://www.youtube.com/watch?v=-7nTHUPzVL0&feature=youtu.be.
  • Q. Wang, “Lectures on nonlinear wave equations”, lecture notes, University of Oxford, 2015, hook http://people.maths.ox.ac.uk/wangq1/Lecture_notes/nonlinear_wave_9.pdf \posturlhook.