The Annals of Statistics

Peter Hall’s main contributions to deconvolution

Aurore Delaigle

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Peter Hall died in Melbourne on January 9, 2016. He was an extremely prolific researcher and contributed to many different areas of statistics. In this paper, I talk about my experience with Peter and I summarise his main contributions to deconvolution, which include measurement error problems and problems in image analysis.

Article information

Source
Ann. Statist. Volume 44, Number 5 (2016), 1854-1866.

Dates
Received: June 2016
First available in Project Euclid: 12 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.aos/1473685260

Digital Object Identifier
doi:10.1214/16-AOS1491

Mathematical Reviews number (MathSciNet)
MR3546435

Zentralblatt MATH identifier
1349.62009

Subjects
Primary: 62G07: Density estimation 62G08: Nonparametric regression 62G20: Asymptotic properties

Keywords
Berkson errors errors-in-variables image analysis measurement errors nonparametric smoothing

Citation

Delaigle, Aurore. Peter Hall’s main contributions to deconvolution. Ann. Statist. 44 (2016), no. 5, 1854--1866. doi:10.1214/16-AOS1491. https://projecteuclid.org/euclid.aos/1473685260


Export citation

References

  • Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. Bernoulli 11 309–340.
  • Butucea, C., Matias, C. and Pouet, C. (2008). Adaptivity in convolution models with partially known noise distribution. Electron. J. Stat. 2 897–915.
  • Carroll, R. J., Delaigle, A. and Hall, P. (2007). Non-parametric regression estimation from data contaminated by a mixture of Berkson and classical errors. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 859–878.
  • Carroll, R. J., Delaigle, A. and Hall, P. (2009). Nonparametric prediction in measurement error models. J. Amer. Statist. Assoc. 104 993–1003.
  • Carroll, R. J., Delaigle, A. and Hall, P. (2011). Testing and estimating shape-constrained nonparametric density and regression in the presence of measurement error. J. Amer. Statist. Assoc. 106 191–202.
  • Carroll, R., Delaigle, A. and Hall, P. (2012). Deconvolution when classifying noisy data involving transformations. J. Amer. Statist. Assoc. 107 1166–1177.
  • Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184–1186.
  • Carroll, R. J. and Hall, P. (2004). Low order approximations in deconvolution and regression with errors in variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 31–46.
  • Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models: A Modern Perspective, 2nd ed. Monographs on Statistics and Applied Probability 105. Chapman & Hall/CRC, Boca Raton, FL.
  • Chen, S. X., Delaigle, A. and Hall, P. (2010). Nonparametric estimation for a class of Lévy processes. J. Econometrics 157 257–271.
  • Cheng, M. Y. and Fan, J. (2016). Peter Hall’s contributions to nonparametric function estimation and modeling. Ann. Statist. 44 1837–1853.
  • Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models. J. Amer. Statist. Assoc. 89 1314–1328.
  • Delaigle, A. (2008). An alternative view of the deconvolution problem. Statist. Sinica 18 1025–1045.
  • Delaigle, A. and Hall, P. (2006). On optimal kernel choice for deconvolution. Statist. Probab. Lett. 76 1594–1602.
  • Delaigle, A. and Hall, P. (2008). Using SIMEX for smoothing-parameter choice in errors-in-variables problems. J. Amer. Statist. Assoc. 103 280–287.
  • Delaigle, A. and Hall, P. (2011). Estimation of observation-error variance in errors-in-variables regression. Statist. Sinica 21 1023–1063.
  • Delaigle, A. and Hall, P. (2016). Methodology for non-parametric deconvolution when the error distribution is unknown. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 231–252.
  • Delaigle, A., Hall, P. and Jamshidi, F. (2015). Confidence bands in non-parametric errors-in-variables regression. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 149–169.
  • Delaigle, A., Hall, P. and Meister, A. (2008). On deconvolution with repeated measurements. Ann. Statist. 36 665–685.
  • Delaigle, A., Hall, P. and Müller, H.-G. (2007). Accelerated convergence for nonparametric regression with coarsened predictors. Ann. Statist. 35 2639–2653.
  • Delaigle, A., Hall, P. and Qiu, P. (2006). Nonparametric methods for solving the Berkson errors-in-variables problem. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 201–220.
  • Delaigle, A. and Wand, M. P. (2016). A conversation with Peter Hall. Statist. Sci. 31 275–304.
  • Diggle, P. J. and Hall, P. (1993). A Fourier approach to nonparametric deconvolution of a density estimate. J. Roy. Statist. Soc. Ser. B 55 523–531.
  • Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257–1272.
  • Fan, J. and Truong, Y. K. (1993). Nonparametric regression with errors in variables. Ann. Statist. 21 1900–1925.
  • Hall, P. (1987a). On the amount of detail that can be recovered from a degraded signal. Adv. in Appl. Probab. 19 371–395.
  • Hall, P. (1987b). On the processing of a motion-blurred image. SIAM J. Appl. Math. 47 441–453.
  • Hall, P. (1990). Optimal convergence rates in signal recovery. Ann. Probab. 18 887–900.
  • Hall, P. and Koch, I. (1990). On continuous image models and image analysis in the presence of correlated noise. Adv. in Appl. Probab. 22 332–349.
  • Hall, P. and Koch, I. (1992). On the feasibility of cross-validation in image analysis. SIAM J. Appl. Math. 52 292–313.
  • Hall, P. and Lahiri, S. N. (2008). Estimation of distributions, moments and quantiles in deconvolution problems. Ann. Statist. 36 2110–2134.
  • Hall, P. and Ma, Y. (2007). Testing the suitability of polynomial models in errors-in-variables problems. Ann. Statist. 35 2620–2638.
  • Hall, P. and Maiti, T. (2009). Deconvolution methods for non-parametric inference in two-level mixed models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 703–718.
  • Hall, P. and Meister, A. (2007). A ridge-parameter approach to deconvolution. Ann. Statist. 35 1535–1558.
  • Hall, P. and Qiu, P. (2005). Discrete-transform approach to deconvolution problems. Biometrika 92 135–148.
  • Hall, P. and Qiu, P. (2007a). Blind deconvolution and deblurring in image analysis. Statist. Sinica 17 1483–1509.
  • Hall, P. and Qiu, P. (2007b). Nonparametric estimation of a point-spread function in multivariate problems. Ann. Statist. 35 1512–1534.
  • Hall, P. and Simar, L. (2002). Estimating a changepoint, boundary, or frontier in the presence of observation error. J. Amer. Statist. Assoc. 97 523–534.
  • Hall, P. and Titterington, D. M. (1986). On some smoothing techniques used in image restoration. J. Roy. Statist. Soc. Ser. B 48 330–343.
  • Lee, M., Hall, P., Shen, H., Marron, J. S., Tolle, J. and Burch, C. (2013). Deconvolution estimation of mixture distributions with boundaries. Electron. J. Stat. 7 323–341.
  • Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement error model using multiple indicators. J. Multivariate Anal. 65 139–165.
  • Meister, A. (2006). Density estimation with normal measurement error with unknown variance. Statist. Sinica 16 195–211.
  • Müller, H.-G. (2016). Peter Hall, functional data analysis and random objects. Ann. Statist. 44 1867–1887.
  • Neumann, M. H. (1997). On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Statist. 7 307–330.
  • Staudenmayer, J. and Ruppert, D. (2004). Local polynomial regression and simulation-extrapolation. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 17–30.
  • Stefanski, L. and Carroll, R. J. (1990). Deconvoluting kernel density estimators. Statistics 21 169–184.