The Annals of Statistics

On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates

Luc Devroye

Full-text: Open access

Abstract

Let $(X, Y), (X_1, Y_1), \cdots, (X_n, Y_n)$ be independent identically distributed random vectors from $R^d \times R$, and let $E(|Y|^p) < \infty$ for some $p \geq 1$. We wish to estimate the regression function $m(x) = E(Y \mid X = x)$ by $m_n(x)$, a function of $x$ and $(X_1, Y_1), \cdots, (X_n, Y_n)$. For large classes of kernel estimates and nearest neighbor estimates, sufficient conditions are given for $E\{|m_n(x) - m(x)|^p\} \rightarrow 0$ as $n \rightarrow \infty$, almost all $x$. No additional conditions are imposed on the distribution of $(X, Y)$. As a by-product, just assuming the boundedness of $Y$, the almost sure convergence to 0 of $E\{|m_n(X) - m(X)\| X_1, Y_1, \cdots, X_n, Y_n\}$ is established for the same estimates. Finally, the weak and strong Bayes risk consistency of the corresponding nonparametric discrimination rules is proved for all possible distributions of the data.

Article information

Source
Ann. Statist., Volume 9, Number 6 (1981), 1310-1319.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176345647

Digital Object Identifier
doi:10.1214/aos/1176345647

Mathematical Reviews number (MathSciNet)
MR630113

Zentralblatt MATH identifier
0477.62025

JSTOR
links.jstor.org

Subjects
Primary: 62G05: Estimation

Keywords
Regression function nonparametric discrimination nearest neighbor rule kernel estimate universal consistency

Citation

Devroye, Luc. On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates. Ann. Statist. 9 (1981), no. 6, 1310--1319. doi:10.1214/aos/1176345647. https://projecteuclid.org/euclid.aos/1176345647


Export citation