Annals of Statistics
- Ann. Statist.
- Volume 34, Number 3 (2006), 1436-1462.
High-dimensional graphs and variable selection with the Lasso
Nicolai Meinshausen and Peter Bühlmann
Abstract
The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a computationally attractive alternative to standard covariance selection for sparse high-dimensional graphs. Neighborhood selection estimates the conditional independence restrictions separately for each node in the graph and is hence equivalent to variable selection for Gaussian linear models. We show that the proposed neighborhood selection scheme is consistent for sparse high-dimensional graphs. Consistency hinges on the choice of the penalty parameter. The oracle value for optimal prediction does not lead to a consistent neighborhood estimate. Controlling instead the probability of falsely joining some distinct connectivity components of the graph, consistent estimation for sparse graphs is achieved (with exponential rates), even when the number of variables grows as the number of observations raised to an arbitrary power.
Article information
Source
Ann. Statist., Volume 34, Number 3 (2006), 1436-1462.
Dates
First available in Project Euclid: 10 July 2006
Permanent link to this document
https://projecteuclid.org/euclid.aos/1152540754
Digital Object Identifier
doi:10.1214/009053606000000281
Mathematical Reviews number (MathSciNet)
MR2278363
Zentralblatt MATH identifier
1113.62082
Subjects
Primary: 62J07: Ridge regression; shrinkage estimators
Secondary: 62H20: Measures of association (correlation, canonical correlation, etc.) 62F12: Asymptotic properties of estimators
Keywords
Linear regression covariance selection Gaussian graphical models penalized regression
Citation
Meinshausen, Nicolai; Bühlmann, Peter. High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 (2006), no. 3, 1436--1462. doi:10.1214/009053606000000281. https://projecteuclid.org/euclid.aos/1152540754

