The Annals of Statistics

Maximal meaningful events and applications to image analysis

Agnès Desolneux, Lionel Moisan, and Jean-Michel Morel

Full-text: Open access


We discuss the mathematical properties of a recently introduced method for computing geometric structures in a digital image without any a priori information. This method is based on a basic principle of perception which we call the Helmholtz principle. According to this principle, an observed geometric structure is perceptually "meaningful" if the expectation of its number of occurrences (in other words, its number of false alarms, NF) is very small in a random image. It is "maximal meaningful" if its NF is minimal among the meaningful structures of the same kind which it contains or is contained in. This definition meets the gestalt theory requirement that parts of a whole are not perceived. We explain by large-deviation estimates why this definition leads to an a priori knowledge-free method, compatible with phenomenology. We state a principle according to which maximal structures do not meet. We prove this principle in the large-deviations framework in the case of alignments in a digital image. We show why these results make maximal meaningful structures computable and display several applications.

Article information

Ann. Statist., Volume 31, Number 6 (2003), 1822-1851.

First available in Project Euclid: 16 January 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 33B20: Incomplete beta and gamma functions (error functions, probability integral, Fresnel integrals) 62H15: Hypothesis testing 62H35: Image analysis 62M40: Random fields; image analysis 68U10: Image processing 68T45: Machine vision and scene understanding 91E30: Psychophysics and psychophysiology; perception

Image analysis perception alignment tail of the binomial distribution rare events large deviations


Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel. Maximal meaningful events and applications to image analysis. Ann. Statist. 31 (2003), no. 6, 1822--1851. doi:10.1214/aos/1074290328.

Export citation


  • Almansa, A., Desolneux, A. and Vamech, S. (2003). Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Machine Intelligence 25 502--507.
  • Cao, F. (2002). Contrast invariant detection of good continuations, corners and terminators. INRIA Research Report 4542.
  • Chu, C. K., Glad, I. K., Godtliebsen, F. and Marron, J. S. (1998). Edge preserving smoothers for image processing (with discussion). J. Amer. Statist. Assoc. 93 526--556.
  • Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques and Applications. Jones and Bartlett, Boston.
  • Desolneux, A., Moisan, L. and Morel, J.-M. (1999). Meaningful alignments. Preprint. Available at
  • Desolneux, A., Moisan, L. and Morel, J.-M. (2000). Meaningful alignments. Internat. J. Comput. Vision 40 7--23.
  • Desolneux, A., Moisan, L. and Morel, J.-M. (2001). Edge detection by Helmholtz principle. J. Math. Imaging Vision 14 271--284.
  • Desolneux, A., Moisan, L. and Morel, J.-M. (2003). A grouping principle and four applications. IEEE Trans. Pattern Anal. Machine Intelligence 25 508--513.
  • Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200--1224.
  • Feller, W. (1968). An Introduction to Probability Theory and Its Applications 1, 3rd ed. Wiley, New York.
  • Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24 381--395.
  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence 6 721--741.
  • Guy, G. and Medioni, G. (1996). Inferring global perceptual contours from local features. Internat. J. Comput. Vision 20 113--133.
  • Hoeffding, W. (1963). Probability inequalities for sum of bounded random variables. J. Amer. Statist. Assoc. 58 13--30.
  • Kaas, R. and Buhrman, J. M. (1980). Mean, median and mode in binomial distributions. Statist. Neerlandica 34 13--18.
  • Kanizsa, G. (1994). La grammaire du voir. Diderot, Paris.
  • Kiryati, N., Eldar, Y. and Bruckstein, A. M. (1991). A probabilistic Hough transform. Pattern Recognition 24 303--316.
  • Leclerc, Y. (1989). Constructing simple stable descriptions for image partitioning. Internat. J. Comput. Vision 3 73--102.
  • Lowe, D. (1985). Perceptual Organization and Visual Recognition. Kluwer, Dordrecht.
  • Maître, H. (1985). Un panorama de la transformation de Hough. Trait. Signal 2 305--318.
  • Marr, D. (1982). Vision. Freeman, New York.
  • Metzger, W. (1975). Gesetze des Sehens. Waldemar Kramer, Frankfurt.
  • Moisan, L. (2003). Asymptotic estimates and inequalities for the tail of the binomial distribution. Unpublished manuscript.
  • Mumford, D. and Shah, J. (1985). Boundary detection by minimizing functionals. In IEEE Conference on Computer Vision and Pattern Recognition.
  • Nitzberg, N., Mumford, D. and Shiota, T. (1993). Filtering, Segmentation and Depth. Lecture Notes in Comput. Sci. 662. Springer, Berlin.
  • Parent, P. and Zucker, S. W. (1989). Trace inference, curvature consistency and curve detection. IEEE Trans. Pattern Anal. Machine Intelligence 11 823--839.
  • Qiu, P. (1998). Discontinuous regression surfaces fitting. Ann. Statist. 26 2218--2245.
  • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. Ann. Statist. 11 416--431.
  • Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley, New York.
  • Rudin, L., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Phys. D 60 259--268.
  • Sha'Ashua, A. and Ullman, S. (1988). Structural saliency: The detection of globally salient structures using a locally connected network. In Proc. Second International Conference on Computer Vision 321--327. IEEE, Washington.
  • Shaked, D., Yaron, O. and Kiryati, N. (1996). Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Computer Vision and Image Understanding 63 512--526.
  • Slud, E. (1978). Distribution inequalities for the binomial law. Ann. Probab. 5 404--412.
  • Stewart, C. V. (1995). MINPRAN: A new robust estimator for computer vision. IEEE Trans. Pattern Anal. Machine Intelligence 17 925--938.
  • Wertheimer, M. (1923). Untersuchungen zur Lehre der Gestalt II. Psychologische Forschung 4 301--350.
  • Yuille, A. L., Coughlan, J. M., Wu, Y.-N. and Zhu, S. C. (2001). Order parameters for detecting target curves in images: When does high-level knowledge help? Internat. J. Comput. Vision 41 9--33.