The Annals of Statistics

Blocking in regular fractional factorials: a projective geometric approach

Rahul Mukerjee and C. F. J. Wu

Full-text: Open access

Abstract

A projective geometric characterization is given of the existence of any regular main effect $s^{n-k}$ design in $s^{\gamma}$ blocks. It leads to a constructive method for finding a maximal blocking scheme for any given fractional factorial design. A useful sufficient condition for admissible block designs is given in terms of the minimum aberration property of a certain unblocked design.

Article information

Source
Ann. Statist. Volume 27, Number 4 (1999), 1256-1271.

Dates
First available in Project Euclid: 4 April 2002

Permanent link to this document
https://projecteuclid.org/euclid.aos/1017938925

Digital Object Identifier
doi:10.1214/aos/1017938925

Mathematical Reviews number (MathSciNet)
MR1740111

Zentralblatt MATH identifier
0959.62066

Subjects
Primary: 62K15: Factorial designs
Secondary: 62K05: Optimal designs

Keywords
Admissible block designs main effect pencil minimum aberration criterion order of estimability resolution

Citation

Mukerjee, Rahul; Wu, C. F. J. Blocking in regular fractional factorials: a projective geometric approach. Ann. Statist. 27 (1999), no. 4, 1256--1271. doi:10.1214/aos/1017938925. https://projecteuclid.org/euclid.aos/1017938925.


Export citation

References

  • BOSE, R. C. 1947. Mathematical theory of the symmetrical factorial design. Sankhya 8 107 166. Z. n m
  • CHEN, H. and HEDAYAT, A. S. 1996. 2 fractional factorial designs with weak minimum aberration. Ann. Statist. 24 2536 2548. Z.
  • CHEN, J., SUN, D. X. and WU, C. F. J. 1993. A catalogue of two-level and three-level fractional factorial designs with small runs. Internat. Statist. Rev. 61 131 145. Z.
  • CHENG, C. S. and MUKERJEE, R. 1998. Regular fractional factorial designs with minimum aberration and maximum estimation capacity. Ann. Statist. 26 2289 2300. Z. NATIONAL BUREAU OF STANDARDS 1957. Fractional Factorial Experiment Designs for Factors at Two Levels. Applied Mathematics Series 48. Washington, D.C.: U.S. Government Printing Office. Z. NATIONAL BUREAU OF STANDARDS 1959. Fractional Factorial Experiment Designs for Factors at Three Levels. Applied Mathematics Series 54. Washington, D.C.: U.S. Government Printing Office. Z.
  • SITTER, R., CHEN, J. and FEDER, M. 1997. Fractional resolution and minimum aberration in blocked 2n k designs. Technometrics 39 382 390. Z. n m
  • SUEN, C.-Y., CHEN, H. and WU, C. F. J. 1997. Some identities on q designs with application to minimum aberration designs. Ann. Statist. 25 1176 1188. Z. n n p
  • SUN, D. X., WU, C. F. J. and CHEN, Y. Y. 1997. Optimal blocking schemes for 2 and 2 designs. Technometrics 39 298 307. Z. n k
  • TANG, B. and WU, C. F. J. 1996. Characterization of minimum aberration 2 designs in terms of their complementary designs. Ann. Statist. 24 2549 2559. Z.
  • WU, C. F. J., ZHANG, R. and WANG, R. 1992. Construction of asymmetrical orthogonal arrays of Z k Z r1.n1 Z rt.nt. the type OA s, s s. Statist. Sinica 2 203 219.
  • ALIPORE, CALCUTTA 70027 ANN ARBOR, MICHIGAN 48109 INDIA E-MAIL: jeffwu@umich.edu