The Annals of Probability
- Ann. Probab.
- Volume 47, Number 5 (2019), 3143-3169.
Cone points of Brownian motion in arbitrary dimension
Yotam Alexander and Ronen Eldan
Abstract
We show that the convex hull of the path of Brownian motion in $n$-dimensions, up to time $1$, is a smooth set. As a consequence we conclude that a Brownian motion in any dimension almost surely has no cone points for any cone whose dual cone is nontrivial.
Article information
Source
Ann. Probab., Volume 47, Number 5 (2019), 3143-3169.
Dates
Received: May 2018
Revised: December 2018
First available in Project Euclid: 22 October 2019
Permanent link to this document
https://projecteuclid.org/euclid.aop/1571731447
Digital Object Identifier
doi:10.1214/19-AOP1335
Mathematical Reviews number (MathSciNet)
MR4021247
Subjects
Primary: 60J65: Brownian motion [See also 58J65] 52A22: Random convex sets and integral geometry [See also 53C65, 60D05]
Keywords
Brownian motion cone points convex hull
Citation
Alexander, Yotam; Eldan, Ronen. Cone points of Brownian motion in arbitrary dimension. Ann. Probab. 47 (2019), no. 5, 3143--3169. doi:10.1214/19-AOP1335. https://projecteuclid.org/euclid.aop/1571731447