The Annals of Probability

The fourth moment theorem on the Poisson space

Christian Döbler and Giovanni Peccati

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove a fourth moment bound without remainder for the normal approximation of random variables belonging to the Wiener chaos of a general Poisson random measure. Such a result—that has been elusive for several years—shows that the so-called ‘fourth moment phenomenon’, first discovered by Nualart and Peccati [Ann. Probab. 33 (2005) 177–193] in the context of Gaussian fields, also systematically emerges in a Poisson framework. Our main findings are based on Stein’s method, Malliavin calculus and Mecke-type formulae, as well as on a methodological breakthrough, consisting in the use of carré-du-champ operators on the Poisson space for controlling residual terms associated with add-one cost operators. Our approach can be regarded as a successful application of Markov generator techniques to probabilistic approximations in a nondiffusive framework: as such, it represents a significant extension of the seminal contributions by Ledoux [Ann. Probab. 40 (2012) 2439–2459] and Azmoodeh, Campese and Poly [J. Funct. Anal. 266 (2014) 2341–2359]. To demonstrate the flexibility of our results, we also provide some novel bounds for the Gamma approximation of nonlinear functionals of a Poisson measure.

Article information

Ann. Probab., Volume 46, Number 4 (2018), 1878-1916.

Received: January 2017
Revised: July 2017
First available in Project Euclid: 13 June 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems
Secondary: 60H07: Stochastic calculus of variations and the Malliavin calculus 60H05: Stochastic integrals

Poisson functionals multiple Wiener–Itô integrals fourth moment theorem carré-du-champ operator Berry–Esseen bounds Gaussian approximation Gamma approximation Malliavin calculus Stein’s method


Döbler, Christian; Peccati, Giovanni. The fourth moment theorem on the Poisson space. Ann. Probab. 46 (2018), no. 4, 1878--1916. doi:10.1214/17-AOP1215.

Export citation


  • Azmoodeh, E., Campese, S. and Poly, G. (2014). Fourth Moment Theorems for Markov diffusion generators. J. Funct. Anal. 266 2341–2359.
  • Azmoodeh, E., Malicet, D., Mijoule, G. and Poly, G. (2016). Generalization of the Nualart–Peccati criterion. Ann. Probab. 44 924–954.
  • Bachmann, S. and Peccati, G. (2016). Concentration bounds for geometric Poisson functionals: Logarithmic Sobolev inequalities revisited. Electron. J. Probab. 21 no. 6, 21.
  • Bakry, D., Gentil, I. and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 348. Springer, Cham.
  • Bouleau, N. and Denis, L. (2015). Dirichlet Forms Methods for Poisson Point Measures and Lévy Processes. Springer, Cham.
  • Bourguin, S. and Peccati, G. (2014). Semicircular limits on the free Poisson chaos: Counterexamples to a transfer principle. J. Funct. Anal. 267 963–997.
  • Bourguin, S. and Peccati, G. (2016). The Malliavin–Stein method on the Poisson space. In Stochastic Analysis for Poisson Point Processes. Bocconi Springer Ser. 7 185–228. Bocconi Univ. Press.
  • Chen, L. H. Y., Goldstein, L. and Shao, Q.-M. (2011). Normal Approximation by Stein’s Method. Springer, Heidelberg.
  • Chen, L. H. Y. and Poly, G. (2015). Stein’s method, Malliavin calculus, Dirichlet forms and the fourth moment theorem. In Festschrift Masatoshi Fukushima. Interdiscip. Math. Sci. 17 107–130. World Sci. Publ., Hackensack, NJ.
  • de Jong, P. (1987). A central limit theorem for generalized quadratic forms. Probab. Theory Related Fields 75 261–277.
  • de Jong, P. (1989). Central Limit Theorems for Generalized Multilinear Forms. CWI Tract 61. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam.
  • de Jong, P. (1990). A central limit theorem for generalized multilinear forms. J. Multivariate Anal. 34 275–289.
  • Döbler, C. and Krokowski, K. (2017). On the fourth moment condition for Rademacher chaos. Ann. Inst. Henri Poincaré Probab. Stat. To appear. arXiv:1706.00751.
  • Döbler, C. and Peccati, G. (2017a). Quantiative de Jong theorems in any dimension. Electron. J. Probab. 22 1–35.
  • Döbler, C. and Peccati, G. (2017b). The Gamma Stein equation and non-central de Jong theorems. Bernoulli. To appear. arXiv:1612.02279.
  • Döbler, C., Vidotto, A. and Zheng, G. (2017). Fourth moment theorems on the Poisson space in any dimension. arXiv:1707.01889.
  • Eichelsbacher, P. and Thäle, C. (2014). New Berry–Esseen bounds for non-linear functionals of Poisson random measures. Electron. J. Probab. 19 no. 102, 25.
  • Fissler, T. and Thäle, C. (2016). A four moments theorem for gamma limits on a Poisson chaos. ALEA Lat. Am. J. Probab. Math. Stat. 13 163–192.
  • Lachièze-Rey, R. and Peccati, G. (2013). Fine Gaussian fluctuations on the Poisson space, I: Contractions, cumulants and geometric random graphs. Electron. J. Probab. 18 no. 32, 32.
  • Lachièze-Rey, R. and Reitzner, M. (2016). $U$-statistics in stochastic geometry. In Stochastic Analysis for Poisson Point Processes (G. Peccati and M. Reitzner, eds.). 229–253. Bocconi Univ. Press.
  • Lachièze-Rey, R., Schulte, M. and Yukich, J. (2016). Normal approximation for sums of stabilizing functionals. Preprint. arXiv:1702.00726.
  • Last, G. (2016). Stochastic analysis for Poisson processes. In Stochastic Analysis for Poisson Point Processes. Bocconi Springer Ser. 7 1–36. Bocconi Univ. Press.
  • Last, G., Peccati, G. and Schulte, M. (2016). Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Probab. Theory Related Fields 165 667–723.
  • Last, G. and Penrose, M. D. (2011). Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields 150 663–690.
  • Last, G. and Penrose, M. (2017). Lectures on the Poisson Process. Cambridge Univ. Press, Cambridge.
  • Ledoux, M. (2012). Chaos of a Markov operator and the fourth moment condition. Ann. Probab. 40 2439–2459.
  • Ledoux, M., Nourdin, I. and Peccati, G. (2015). Stein’s method, logarithmic Sobolev and transport inequalities. Geom. Funct. Anal. 25 256–306.
  • Mecke, J. (1967). Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrsch. Verw. Gebiete 9 36–58.
  • Nourdin, I. and Peccati, G. (2009a). Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 75–118.
  • Nourdin, I. and Peccati, G. (2009b). Noncentral convergence of multiple integrals. Ann. Probab. 37 1412–1426.
  • Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ. Press, Cambridge.
  • Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177–193.
  • Peccati, G. and Reitzner, M. (2016). Stochastic Analysis for Poisson Point Processes. Springer, Cham.
  • Peccati, G. and Taqqu, M. S. (2008). Central limit theorems for double Poisson integrals. Bernoulli 14 791–821.
  • Peccati, G. and Thäle, C. (2013). Gamma limits and $U$-statistics on the Poisson space. ALEA Lat. Am. J. Probab. Math. Stat. 10 525–560.
  • Peccati, G. and Zheng, C. (2010). Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 1487–1527.
  • Peccati, G. and Zheng, C. (2014). Universal Gaussian fluctuations on the discrete Poisson chaos. Bernoulli 20 697–715.
  • Peccati, G., Solé, J. L., Taqqu, M. S. and Utzet, F. (2010). Stein’s method and normal approximation of Poisson functionals. Ann. Probab. 38 443–478.
  • Reitzner, M. and Schulte, M. (2013). Central limit theorems for U-statistics of Poisson point processes. Ann. Probab. 41 3879–3909.
  • Schulte, M. (2016). Normal approximation of Poisson functionals in Kolmogorov distance. J. Theoret. Probab. 29 96–117.
  • Schulte, M. and Thäle, C. (2016). Poisson point process convergence and extreme values in stochastic geometry. In Stochastic Analysis for Poisson Point Processes. Bocconi Springer Ser. 7 255–294. Bocconi Univ. Press.