Annals of Probability

The Hausdorff dimension of the CLE gasket

Jason Miller, Nike Sun, and David B. Wilson

Full-text: Open access


The conformal loop ensemble $\mathrm{CLE}_{\kappa}$ is the canonical conformally invariant probability measure on noncrossing loops in a proper simply connected domain in the complex plane. The parameter $\kappa$ varies between $8/3$ and $8$; $\mathrm{CLE}_{8/3}$ is empty while $\mathrm{CLE}_{8}$ is a single space-filling loop. In this work, we study the geometry of the $\mathrm{CLE}$ gasket, the set of points not surrounded by any loop of the $\mathrm{CLE}$. We show that the almost sure Hausdorff dimension of the gasket is bounded from below by $2-(8-\kappa)(3\kappa-8)/(32\kappa)$ when $4<\kappa<8$. Together with the work of Schramm–Sheffield–Wilson [Comm. Math. Phys. 288 (2009) 43–53] giving the upper bound for all $\kappa$ and the work of Nacu–Werner [J. Lond. Math. Soc. (2) 83 (2011) 789–809] giving the matching lower bound for $\kappa\le4$, this completes the determination of the $\mathrm{CLE}_{\kappa}$ gasket dimension for all values of $\kappa$ for which it is defined. The dimension agrees with the prediction of Duplantier–Saleur [Phys. Rev. Lett. 63 (1989) 2536–2537] for the FK gasket.

Article information

Ann. Probab., Volume 42, Number 4 (2014), 1644-1665.

First available in Project Euclid: 3 July 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)
Secondary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Schramm–Loewner evolution (SLE) conformal loop ensemble (CLE) gasket


Miller, Jason; Sun, Nike; Wilson, David B. The Hausdorff dimension of the CLE gasket. Ann. Probab. 42 (2014), no. 4, 1644--1665. doi:10.1214/12-AOP820.

Export citation


  • [1] Benoist, S., Duminil-Copin, H. and Hongler, C. (2013). Unpublished manuscript.
  • [2] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1–38.
  • [3] Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and $\mathrm{SLE}_{6}$: A proof of convergence. Probab. Theory Related Fields 139 473–519.
  • [4] Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A. and Smirnov, S. (2013). Convergence of Ising interfaces to Schramm’s SLEs. Unpublished manuscript.
  • [5] Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189 515–580.
  • [6] Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2004). Cover times for Brownian motion and random walks in two dimensions. Ann. of Math. (2) 160 433–464.
  • [7] Duplantier, B. (1990). Exact fractal area of two-dimensional vesicles. Phys. Rev. Lett. 64 493.
  • [8] Duplantier, B. and Saleur, H. (1989). Exact fractal dimension of 2D Ising clusters. Comment on: “Scaling and fractal dimension of Ising clusters at the $d=2$ critical point” [Phys. Rev. Lett. 62 (1989) 1067–1070] by A. L. Stella and C. Vanderzande. Phys. Rev. Lett. 63 2536–2537.
  • [9] Garban, C., Rohde, S. and Schramm, O. (2012). Continuity of the SLE trace in simply connected domains. Israel J. Math. 187 23–36.
  • [10] Hu, X., Miller, J. and Peres, Y. (2010). Thick points of the Gaussian free field. Ann. Probab. 38 896–926.
  • [11] Kager, W. and Nienhuis, B. (2004). A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115 1149–1229.
  • [12] Kemppainen, A. and Smirnov, S. (2013). Unpublished manuscript.
  • [13] Lawler, G., Schramm, O. and Werner, W. (2003). Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 917–955 (electronic).
  • [14] Lawler, G. F. (2011). Continuity of radial and two-sided radial $\mathrm{SLE}_{\kappa}$ at the terminal point. Preprint. Available at arXiv:1104.1620.
  • [15] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI.
  • [16] Lawler, G. F., Schramm, O. and Werner, W. (2002). One-arm exponent for critical 2D percolation. Electron. J. Probab. 7 13 pp. (electronic).
  • [17] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939–995.
  • [18] Miller, J. (2010). Universality for $\mathrm{SLE}_{4}$. Preprint. Available at arXiv:1010.1356.
  • [19] Miller, J. and Sheffield, S. (2012). ${\mathrm{CLE}}_{4}$ and the Gaussian free field. Unpublished manuscript.
  • [20] Miller, J. and Sheffield, S. (2012). Imaginary geometry I: Interacting $\mathrm{SLE}$ paths. Preprint. Available at arXiv:1201.1496.
  • [21] Miller, J. and Sheffield, S. (2012). Imaginary geometry III: Reversibility of $\mathrm{SLE} _{\kappa}$ for $\kappa\in(4,8)$. Preprint. Available at arXiv:1201.1498.
  • [22] Mörters, P. and Peres, Y. (2010). Brownian Motion. Cambridge Univ. Press, Cambridge.
  • [23] Nacu, Ş. and Werner, W. (2011). Random soups, carpets and fractal dimensions. J. Lond. Math. Soc. (2) 83 789–809.
  • [24] Pommerenke, C. (1975). Univalent Functions. Vandenhoeck & Ruprecht, Göttingen.
  • [25] Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften 299. Springer, Berlin.
  • [26] Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. (2) 161 883–924.
  • [27] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221–288.
  • [28] Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202 21–137.
  • [29] Schramm, O., Sheffield, S. and Wilson, D. B. (2009). Conformal radii for conformal loop ensembles. Comm. Math. Phys. 288 43–53.
  • [30] Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math. 11 659–669 (electronic).
  • [31] Sheffield, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J. 147 79–129.
  • [32] Sheffield, S. and Werner, W. (2012). Conformal loop ensembles: The Markovian characterization and the loop-soup construction. Ann. of Math. (2) 176 1827–1917.
  • [33] Smirnov, S. (2005). Critical percolation and conformal invariance. In XIVth International Congress on Mathematical Physics 99–112. World Sci. Publ., Hackensack, NJ.
  • [34] Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 1435–1467.
  • [35] Werner, W. (2003). SLEs as boundaries of clusters of Brownian loops. C. R. Math. Acad. Sci. Paris 337 481–486.
  • [36] Werner, W. (2004). Random planar curves and Schramm–Loewner evolutions. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1840 107–195. Springer, Berlin.
  • [37] Werner, W. and Wu, H. (2013). On conformally invariant CLE explorations. Comm. Math. Phys. 320 637–661.
  • [38] Whyburn, G. T. (1942). Analytic Topology. American Mathematical Society Colloquium Publications 28. Amer. Math. Soc., New York.