The Annals of Probability

Percolation on dense graph sequences

Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan

Full-text: Open access

Abstract

In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs (Gn). Let λn be the largest eigenvalue of the adjacency matrix of Gn, and let Gn(pn) be the random subgraph of Gn obtained by keeping each edge independently with probability pn. We show that the appearance of a giant component in Gn(pn) has a sharp threshold at pn=1/λn. In fact, we prove much more: if (Gn) converges to an irreducible limit, then the density of the largest component of Gn(c/n) tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lovász, Sós and Vesztergombi.

In addition to using basic properties of convergence, we make heavy use of the methods of Bollobás, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.

Article information

Source
Ann. Probab., Volume 38, Number 1 (2010), 150-183.

Dates
First available in Project Euclid: 25 January 2010

Permanent link to this document
https://projecteuclid.org/euclid.aop/1264433995

Digital Object Identifier
doi:10.1214/09-AOP478

Mathematical Reviews number (MathSciNet)
MR2599196

Zentralblatt MATH identifier
1190.60090

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 05C80: Random graphs [See also 60B20]

Keywords
Percolation cut metric random graphs

Citation

Bollobás, Béla; Borgs, Christian; Chayes, Jennifer; Riordan, Oliver. Percolation on dense graph sequences. Ann. Probab. 38 (2010), no. 1, 150--183. doi:10.1214/09-AOP478. https://projecteuclid.org/euclid.aop/1264433995


Export citation

References

  • [1] Ajtai, M., Komlós, J. and Szemerédi, E. (1982). Largest random component of a k-cube. Combinatorica 2 1–7.
  • [2] Alon, N., Benjamini, I. and Stacey, A. (2004). Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32 1727–1745.
  • [3] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 23.
  • [4] van den Berg, J. and Kesten, H. (1985). Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 556–569.
  • [5] Bollobás, B. (1984). The evolution of random graphs. Trans. Amer. Math. Soc. 286 257–274.
  • [6] Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 3–122.
  • [7] Bollobás, B., Kohayakawa, Y. and Łuczak, T. (1992). The evolution of random subgraphs of the cube. Random Structures Algorithms 3 55–90.
  • [8] Borgs, C., Chayes, J. T., van der Hofstad, R., Slade, G. and Spencer, J. (2005). Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Random Structures Algorithms 27 137–184.
  • [9] Borgs, C., Chayes, J. T., van der Hofstad, R., Slade, G. and Spencer, J. (2005). Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33 1886–1944.
  • [10] Borgs, C., Chayes, J. T., van der Hofstad, R., Slade, G. and Spencer, J. (2006). Random subgraphs of finite graphs. III. The phase transition for the n-cube. Combinatorica 26 395–410.
  • [11] Borgs, C., Chayes, J. T., Kesten, H. and Spencer, J. (2001). The birth of the infinite cluster: Finite-size scaling in percolation. Comm. Math. Phys. 224 153–204.
  • [12] Borgs, C., Chayes, J., Lovász, L., Sós, V. T. and Vesztergombi, K. (2004). Unpublished.
  • [13] Borgs, C., Chayes, J., Lovász, L., Sós, V. T. and Vesztergombi, K. (2006). Counting graph homomorphisms. In Topics in Discrete Mathematics. Algorithms and Combinatorics 26 315–371. Springer, Berlin.
  • [14] Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K. (2008). Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219 1801–1851.
  • [15] Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K. (2007). Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Preprint. Available at http://research.microsoft.com/~ borgs/Papers/ConRight.pdf.
  • [16] Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 17–61.
  • [17] Frieze, A., Krivelevich, M. and Martin, R. (2004). The emergence of a giant component in random subgraphs of pseudo-random graphs. Random Structures Algorithms 24 42–50.
  • [18] Lovász, L. and Szegedy, B. (2006). Limits of dense graph sequences. J. Combin. Theory Ser. B 96 933–957.
  • [19] Łuczak, T. (1990). Component behavior near the critical point of the random graph process. Random Structures Algorithms 1 287–310.
  • [20] Reimer, D. (2000). Proof of the van den Berg–Kesten conjecture. Combin. Probab. Comput. 9 27–32.
  • [21] Szemerédi, E. (1978). Regular partitions of graphs. In Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS 260 399–401. CNRS, Paris.