The Annals of Probability

Stationary max-stable fields associated to negative definite functions

Zakhar Kabluchko, Martin Schlather, and Laurens de Haan

Full-text: Open access


Let Wi, i∈ℕ, be independent copies of a zero-mean Gaussian process {W(t), t∈ℝd} with stationary increments and variance σ2(t). Independently of Wi, let ∑i=1δUi be a Poisson point process on the real line with intensity eydy. We show that the law of the random family of functions {Vi(⋅), i∈ℕ}, where Vi(t)=Ui+Wi(t)−σ2(t)/2, is translation invariant. In particular, the process η(t)=i=1Vi(t) is a stationary max-stable process with standard Gumbel margins. The process η arises as a limit of a suitably normalized and rescaled pointwise maximum of n i.i.d. stationary Gaussian processes as n→∞ if and only if W is a (nonisotropic) fractional Brownian motion on ℝd. Under suitable conditions on W, the process η has a mixed moving maxima representation.

Article information

Ann. Probab., Volume 37, Number 5 (2009), 2042-2065.

First available in Project Euclid: 21 September 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G70: Extreme value theory; extremal processes
Secondary: 60G15: Gaussian processes

Stationary max-stable processes Gaussian processes Poisson point processes extremes


Kabluchko, Zakhar; Schlather, Martin; de Haan, Laurens. Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37 (2009), no. 5, 2042--2065. doi:10.1214/09-AOP455.

Export citation


  • [1] Aaronson, J. and Denker, M. (1998). Characteristic functions of random variables attracted to 1-stable laws. Ann. Probab. 26 399–415.
  • [2] Berg, C. and Forst, G. (1975). Potential Theory on Locally Compact Abelian Groups. Springer, New York.
  • [3] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
  • [4] Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. J. Appl. Probab. 14 732–739.
  • [5] Brown, M. (1970). A property of Poisson processes and its application to macroscopic equilibrium of particle systems. Ann. Math. Statist. 41 1935–1941.
  • [6] Buishand, T., de Haan, L. and Zhou, C. (2008). On spatial extremes: With application to a rainfall problem. Ann. Appl. Stat. 2 624–642.
  • [7] Davis, R. A. and Resnick, S. I. (1989). Basic properties and prediction of max-ARMA processes. Adv. in Appl. Probab. 21 781–803.
  • [8] de Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab. 12 1194–1204.
  • [9] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer, New York.
  • [10] de Haan, L. and Lin, T. (2001). On convergence toward an extreme value distribution in C[0, 1]. Ann. Probab. 29 467–483.
  • [11] de Haan, L. and Pereira, T. T. (2006). Spatial extremes: Models for the stationary case. Ann. Statist. 34 146–168.
  • [12] de Haan, L. and Pickands, J. (1986). Stationary min-stable stochastic processes. Probab. Theory Related Fields 72 477–492.
  • [13] de Haan, L. and Zhou, C. (2008). On extreme value analysis of a spatial process. REVSTAT 6 71–81.
  • [14] Deheuvels, P. (1983). Point processes and multivariate extreme values. J. Multivariate Anal. 13 257–272.
  • [15] Eddy, W. F. and Gale, J. D. (1981). The convex hull of a spherically symmetric sample. Adv. in Appl. Probab. 13 751–763.
  • [16] Giné, E., Hahn, M. G. and Vatan, P. (1990). Max-infinitely divisible and max-stable sample continuous processes. Probab. Theory Related Fields 87 139–165.
  • [17] Hooghiemstra, G. and Hüsler, J. (1996). A note on maxima of bivariate random vectors. Statist. Probab. Lett. 31 1–6.
  • [18] Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statist. Probab. Lett. 7 283–286.
  • [19] Kingman, J. F. C. (1993). Poisson Processes. Oxford Studies in Probability 3. Oxford Univ. Press, New York.
  • [20] Landau, H. J. and Shepp, L. A. (1970). On the supremum of a Gaussian process. Sankhyā Ser. A 32 369–378.
  • [21] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.
  • [22] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und Ihrer Grenzgebiete 3 23. Springer, Berlin.
  • [23] Marcus, M. B. (1972). Upper bounds for the asymptotic maxima of continuous Gaussian processes. Ann. Math. Statist. 43 522–533.
  • [24] Pickands, J. III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 51–73.
  • [25] Piterbarg, V. I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of Mathematical Monographs 148. Amer. Math. Soc., Providence, RI.
  • [26] Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust 4. Springer, New York.
  • [27] Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5 33–44.
  • [28] Schlather, M. and Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 139–156.
  • [29] Stoev, S. A. and Taqqu, M. S. (2005). Extremal stochastic integrals: A parallel between max-stable processes and α-stable processes. Extremes 8 237–266.
  • [30] Stoev, S. A. (2008). On the ergodicity and mixing of max-stable processes. Stochastic Process. Appl. 118 1679–1705.
  • [31] Zhang, Z. and Smith, R. L. (2004). The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41 1113–1123.