The Annals of Probability

Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction

Francesco Caravenna and Jean-Dominique Deuschel

Full-text: Open access

Abstract

We consider a random field ϕ:{1, …, N}→ℝ as a model for a linear chain attracted to the defect line ϕ=0, that is, the x-axis. The free law of the field is specified by the density exp(−∑iVϕi)) with respect to the Lebesgue measure on ℝN, where Δ is the discrete Laplacian and we allow for a very large class of potentials V(⋅). The interaction with the defect line is introduced by giving the field a reward ɛ≥0 each time it touches the x-axis. We call this model the pinning model. We consider a second model, the wetting model, in which, in addition to the pinning reward, the field is also constrained to stay nonnegative.

We show that both models undergo a phase transition as the intensity ɛ of the pinning reward varies: both in the pinning (a=p) and in the wetting (a=w) case, there exists a critical value ɛca such that when ɛ>ɛca the field touches the defect line a positive fraction of times (localization), while this does not happen for ɛ<ɛca (delocalization). The two critical values are nontrivial and distinct: 0<ɛcp<ɛcw<∞, and they are the only nonanalyticity points of the respective free energies. For the pinning model the transition is of second order, hence the field at ɛ=ɛcp is delocalized. On the other hand, the transition in the wetting model is of first order and for ɛ=ɛcw the field is localized. The core of our approach is a Markov renewal theory description of the field.

Article information

Source
Ann. Probab., Volume 36, Number 6 (2008), 2388-2433.

Dates
First available in Project Euclid: 19 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.aop/1229696607

Digital Object Identifier
doi:10.1214/08-AOP395

Mathematical Reviews number (MathSciNet)
MR2478687

Zentralblatt MATH identifier
1179.60066

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60F05: Central limit and other weak theorems 82B41: Random walks, random surfaces, lattice animals, etc. [See also 60G50, 82C41]

Keywords
Pinning model wetting model phase transition entropic repulsion Markov renewal theory local limit theorem Perron–Frobenius theorem

Citation

Caravenna, Francesco; Deuschel, Jean-Dominique. Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction. Ann. Probab. 36 (2008), no. 6, 2388--2433. doi:10.1214/08-AOP395. https://projecteuclid.org/euclid.aop/1229696607


Export citation

References

  • [1] Alexander, K. S. (2008). The effect of disorder on polymer depinning transitions. Comm. Math. Phys. 279 117–146.
  • [2] Alexander, K. S. and Sidoravicius, V. (2006). Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16 636–669.
  • [3] Alili, L. and Doney, R. A. (1999). Wiener–Hopf factorization revisited and some applications. Stochastics Stochastics Rep. 66 87–102.
  • [4] Asmussen, S. (2003). Applied Probability and Queues, 2nd ed. Applications of Mathematics (New York) 51. Springer, New York.
  • [5] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Encyclopedia of Mathematics and its Applications 27. Cambridge Univ. Press, Cambridge.
  • [6] Bundschuh, R., Lässig, M. and Lipowsky, R. (2000). Semiflexible polymers with attractive Interactions. Eur. Phys. J. E 3 295–306.
  • [7] Caravenna, F. and Deuschel, J.-D. (2008) Scaling limits of (1+1)-dimensional pinning models with Laplacian interaction. Ann. Probab. To appear..
  • [8] Caravenna, F., Giacomin, G. and Zambotti, L. (2007). A renewal theory approach to periodic copolymers with adsorption. Ann. Appl. Probab. 17 1362–1398.
  • [9] Caravenna, F., Giacomin, G. and Zambotti, L. (2006). Sharp asymptotic behavior for wetting models in (1+1)-dimension. Electron. J. Probab. 11 345–362 (electronic).
  • [10] Deuschel, J.-D., Giacomin, G. and Zambotti, L. (2005). Scaling limits of equilibrium wetting models in (1+1)-dimension. Probab. Theory Related Fields 132 471–500.
  • [11] Fisher, M. E. (1984). Walks, walls, wetting, and melting. J. Statist. Phys. 34 667–729.
  • [12] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. II, 2nd ed. Wiley, New York.
  • [13] Giacomin, G. (2007). Random Polymer Models. Imperial College Press, London.
  • [14] Giacomin, G. and Toninelli, F. L. (2006). Smoothing of depinning transitions for directed polymers with quenched disorder. Phys. Rev. Lett. 96 070602.
  • [15] Giacomin, G. and Toninelli, F. L. (2006). Smoothing effect of quenched disorder on polymer depinning transitions. Comm. Math. Phys. 266 1–16.
  • [16] Giacomin, G. and Toninelli, F. L. (2007). On the irrelevant disorder regime of pinning models. Preprint. arXiv.org:0707.3340v1 [math.PR].
  • [17] Hryniv, O. and Velenik, Y. (2008). Some rigorous results about semiflexible polymers. In preparation.
  • [18] Isozaki, Y. and Yoshida, N. (2001). Weakly pinned random walk on the wall: Pathwise descriptions of the phase transition. Stochastic Process. Appl. 96 261–284.
  • [19] Kafri, Y., Mukamel, D. and Peliti, L. (2000). Why is the DNA denaturation transition first order? Phys. Rev. Lett. 85 4988–4991.
  • [20] Kato, T. (1976). Perturbation Theory for Linear Operators, 2nd ed. Springer, Berlin.
  • [21] Kierfeld, J. and Lipowsky, R. (2003). Unbundling and desorption of semiflexible polymers. Europhys. Lett. 62 285–291.
  • [22] Kurt, N. (2007). Entropic repulsion for a class of Gaussian interface models in high dimensions. Stochastic Process. Appl. 117 23–34.
  • [23] Lachal, A. (1991). Sur le premier instant de passage de l’intégrale du mouvement brownien. Ann. Inst. H. Poincaré Probab. Statist. 27 385–405.
  • [24] Li, W. V. and Shao, Q.-M. (2004). Lower tail probabilities for Gaussian processes. Ann. Probab. 32 216–242.
  • [25] McKean, H. P. Jr. (1963). A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 227–235.
  • [26] Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics 83. Cambridge Univ. Press, Cambridge.
  • [27] Richard, C. and Guttmann, A. J. (2004). Poland-Scheraga models and the DNA denaturation transition. J. Statist. Phys. 115 925–947.
  • [28] Sakagawa, H. (2003). Entropic repulsion for a Gaussian lattice field with certain finite range interaction. J. Math. Phys. 44 2939–2951.
  • [29] Sinai, Y. G. (1992). Distribution of some functionals of the integral of a random walk. Teoret. Mat. Fiz. 90 323–353.
  • [30] Toninelli, F. L. (2008). A replica-coupling approach to disordered pinning models. Comm. Math. Phys. 280 389–401.
  • [31] Toninelli, F. L. (2008). Disordered pinning models and copolymers: Beyond annealed bounds. Ann. Appl. Probab. 18 1569–1587.
  • [32] Velenik, Y. (2006). Localization and delocalization of random interfaces. Probab. Surv. 3 112–169 (electronic).
  • [33] Zerner, M. (1987). Quelques propriétés spectrales des opérateurs positifs. J. Funct. Anal. 72 381–417.