The Annals of Probability

Borel Sets Via Games

D. Blackwell

Full-text: Open access

Abstract

A family of games $G = G(\sigma, u)$ is defined such that (a) for each $\sigma$ the set of all $u$ for which Player I can force a win in $G(\sigma, u)$ is a Borel set $B(u)$ and (b) every Borel set is a $B(u)$ for some $u$.

Article information

Source
Ann. Probab., Volume 9, Number 2 (1981), 321-322.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176994474

Digital Object Identifier
doi:10.1214/aop/1176994474

Mathematical Reviews number (MathSciNet)
MR606995

Zentralblatt MATH identifier
0455.28002

JSTOR
links.jstor.org

Subjects
Primary: 28A05: Classes of sets (Borel fields, $\sigma$-rings, etc.), measurable sets, Suslin sets, analytic sets [See also 03E15, 26A21, 54H05]
Secondary: 02K30

Keywords
Borel sets games stop rules

Citation

Blackwell, D. Borel Sets Via Games. Ann. Probab. 9 (1981), no. 2, 321--322. doi:10.1214/aop/1176994474. https://projecteuclid.org/euclid.aop/1176994474


Export citation