The Annals of Probability

Localization and Selection in a Mean Field Branching Random Walk in a Random Environment

Klaus Fleischmann and Andreas Greven

Full-text: Open access

Abstract

We consider a continuous time branching random walk on the finite set $\{1,2,\ldots, N\}$ with totally symmetric diffusion jumps and some site-dependent i.i.d. random birth rates which are unbounded. We study this process as the time $t$ and the space size $N$ tend to infinity simultaneously. In the classical law of large numbers setup for spatial branching models, the growth of the population obeys an exponential limit law due to the localization of the overwhelming portion of particles in the record point of the medium. This phenomenon is analyzed further: The historical path (in space) of a typical particle picked at time $t$ (selection) is of a rather simple and special nature and becomes in the limit singular (in distribution) to the path of the underlying mean field random walk. In general, the properties of the typical path depend on the relation in which $t$ and $N$ tend to infinity.

Article information

Source
Ann. Probab., Volume 20, Number 4 (1992), 2141-2163.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176989543

Digital Object Identifier
doi:10.1214/aop/1176989543

Mathematical Reviews number (MathSciNet)
MR1188056

Zentralblatt MATH identifier
0771.60095

JSTOR
links.jstor.org

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 82A42

Keywords
Branching random walk random medium infinite particle system

Citation

Fleischmann, Klaus; Greven, Andreas. Localization and Selection in a Mean Field Branching Random Walk in a Random Environment. Ann. Probab. 20 (1992), no. 4, 2141--2163. doi:10.1214/aop/1176989543. https://projecteuclid.org/euclid.aop/1176989543


Export citation