Annals of Probability

Competition interfaces and second class particles

Pablo A. Ferrari and Leandro P. R. Pimentel

Full-text: Open access


The one-dimensional nearest-neighbor totally asymmetric simple exclusion process can be constructed in the same space as a last-passage percolation model in ℤ2. We show that the trajectory of a second class particle in the exclusion process can be linearly mapped into the competition interface between two growing clusters in the last-passage percolation model. Using technology built up for geodesics in percolation, we show that the competition interface converges almost surely to an asymptotic random direction. As a consequence we get a new proof for the strong law of large numbers for the second class particle in the rarefaction fan and describe the distribution of the asymptotic angle of the competition interface.

Article information

Ann. Probab., Volume 33, Number 4 (2005), 1235-1254.

First available in Project Euclid: 1 July 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B

Asymmetric simple exclusion second class particle Burgers equation rarefaction fan last-passage percolation competition interface


Ferrari, Pablo A.; Pimentel, Leandro P. R. Competition interfaces and second class particles. Ann. Probab. 33 (2005), no. 4, 1235--1254. doi:10.1214/009117905000000080.

Export citation


  • Benassi, A. and Fouque, J.-P. (1987). Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Probab. 15 546–560.
  • Burton, R. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501–505.
  • Derrida, B. and Dickman, R. (1991). On the interface between two growing Eden clusters. J. Phys. A 24 L191–193. Available at
  • Ferrari, P. A. (1992). Shock fluctuations in asymmetric simple exclusion. Probab. Theory Related Fields 91 81–101.
  • Ferrari, P. A. (1994). Shocks in one-dimensional processes with drift. In Probability and Phase Transition (G. Grimmett, ed.) 420 35–48. Kluwer, Dordrecht.
  • Ferrari, P. A. and Kipnis, C. (1995). Second class particles in the rarefaction front. Ann. Inst. H. Poincaré 31 143–154.
  • Ferrari, P. A., Martin, J. B. and Pimentel, L. P. R. (2004). Roughening and inclination properties of competition interfaces. ArXiv:math. PR/0412198.
  • Häggstrom, O. and Pemantle, R. (1998). First-passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 683–692.
  • Howard, C. D. and Newman, C. M. (2001). Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29 577–623.
  • Licea, C. and Newman, C. M. (1996). Geodesics in two dimension first-passage percolation. Ann. Probab. 24 399–410.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, New York.
  • Martin, J. (2004). Unpublished manuscript.
  • Mountford, T. and Guiol, H. (2005). The motion of a second class particle for the TASEP starting from a decreasing shok profile. Ann. Appl. Probab. 15 1227–1259.
  • Newman, C. M. (1995). A surface view of first-passage percolation. In Proceedings of International Congress of Mathematicians 1994 (S. D. Chatterji, ed.) 2 1017–1023. Birkhäuser, Basel.
  • Pimentel, L. P. R. (2004). Competing growth, interfaces and geodesics in first-passage percolation on Voronoi tilings. Ph.D. thesis, IMPA, Rio de Janeiro. Available at
  • Rezakhanlou, F. (1991). Hydrodynamic limit for attractive particle systems on $ Z\sp d$. Comm. Math. Phys. 140 417–448.
  • Rezakhanlou, F. (1995). Microscopic structure of shocks in one conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 119–153.
  • Rost, H. (1981). Nonequilibrium behaviour of a many particle process: Density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58 41–53.
  • Seppäläinen, T. (1998). Coupling the totally asymmetric simple exclusion process with a moving interface. Markov Process. Related Fields 4 593–628.
  • Seppäläinen, T. (2001). Second class particles as microscopic characteristics in totally asymmetric nearest-neighbor $K$-exclusion processes. Trans. Amer. Math. Soc. 353 4801–4829.
  • Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 73–205.
  • Wüthrich, M. V. (2000). Asymptotic behavior of semi-infinite geodesics for maximal increasing subsequences in the plane. In In and Out of Equilibrium (V. Sidoravicius, ed.) 205–226. Birkhäuser, Basel.