The Annals of Applied Statistics

Nonparametric inference for immune response thresholds of risk in vaccine studies

Kevin M. Donovan, Michael G. Hudgens, and Peter B. Gilbert

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

An important objective in vaccine studies entails identifying an immune response which is predictive of disease risk. Nonparametric methods are developed for inference on immune response thresholds that are associated with specified levels of disease risk, including where the risk level is zero. This threshold is defined as the minimum immune response value above which disease risk is less than or equal to the desired level. The proposed nonparametric methods are compared to previously developed parametric methods in simulation studies. The methods are extended for use in studies that only measure the immune response in a subset of participants, such as case-cohort or case-control studies, and with right censored time to disease outcomes. Finally, these methods are used to estimate neutralizing antibody thresholds for virologically confirmed dengue risk using data from two recent dengue vaccine trials.

Article information

Source
Ann. Appl. Stat., Volume 13, Number 2 (2019), 1147-1165.

Dates
Received: June 2018
Revised: December 2018
First available in Project Euclid: 17 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1560758441

Digital Object Identifier
doi:10.1214/18-AOAS1237

Mathematical Reviews number (MathSciNet)
MR3963566

Zentralblatt MATH identifier
07094849

Keywords
Case-cohort sampling nonparametric risk threshold vaccine studies

Citation

Donovan, Kevin M.; Hudgens, Michael G.; Gilbert, Peter B. Nonparametric inference for immune response thresholds of risk in vaccine studies. Ann. Appl. Stat. 13 (2019), no. 2, 1147--1165. doi:10.1214/18-AOAS1237. https://projecteuclid.org/euclid.aoas/1560758441


Export citation

References

  • Andrews, N., Borrow, R. and Miller, E. (2003). Validation of serological correlate of protection for meningococcal c conjugate vaccine by using efficacy estimates from postlicensure surveillance in England. Clin. Diagn. Lab. Immunol. 10 780–786.
  • Black, S., Nicolay, U., Vesikari, T., Knuf, M., Del Giudice, G., Della Cioppa, G., Tsai, T., Clemens, R. and Rappuoli, R. (2011). Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr. Infect. Dis. J. 30 1081–1085.
  • Borrow, R., Balmer, P. and Miller, E. (2005). Meningococcal surrogates of protection––serum bactericidal antibody activity. Vaccine 23 2222–2227.
  • Breslow, N., Lumley, T., Ballantyne, C., Chambless, L. and Kulich, M. (2009). Using the whole cohort in the analysis of case-cohort data. Am. J. Epidemiol. 169 1398–1405.
  • Capeding, M. R., Tran, N. H., Hadinegoro, S. R. S., Ismail, H. I. H. M., Chotpitayasunondh, T. and Chua, M. N. (2014). Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384 1358–1365.
  • Centers for Disease Control and Prevention (2014). What would happen if we stopped vaccinations? Available at https://www.cdc.gov/vaccines/vac-gen/whatifstop.htm. Accessed June, 2018.
  • Chan, I. S. F., Li, S., Matthews, H., Chan, C., Vessey, R., Sadoff, J. and Heyse, J. (2002). Use of statistical models for evaluating antibody response as a correlate of protection against varicella. Stat. Med. 21 3411–3430.
  • Chen, X., Bailleux, F., Desai, K., Qin, L. and Dunning, A. J. (2013). A threshold method for immunological correlates of protection. BMC Med. Res. Methodol. 13 29.
  • Cole, S. R., Chu, H. and Greenland, S. (2006). Multiple-imputation for measurement-error correction. Int. J. Epidemiol. 35 1074–1081.
  • Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika 66 367–374.
  • Cornfield, J. (1951). A method of estimating comparative rates from clinical data; applications to cancer of the lung, breast, and cervix. J. Natl. Cancer Inst. 11 1269–1275.
  • Donovan, K. M., Hudgens, M. G. and Gilbert, P. B. (2019). Supplement to “Nonparametric inference for immune response thresholds of risk in vaccine studies.” DOI:10.1214/18-AOAS1237SUPP.
  • Dunning, A. J. (2006). A model for immunological correlates of protection. Stat. Med. 25 1485–1497.
  • Dye, C. (2014). After 2015: Infectious diseases in a new era of health and development. Phil. Trans. R. Soc. B 369 20130426.
  • Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. CRC Press, New York.
  • Hadinegoro, S. R., Arredondo-García, J. L., Capeding, M. R., Deseda, C., Chotpitayasunondh, T. and Dietze, R. (2015). Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373 1195–1206.
  • Haynes, B. F., Gilbert, P. B., McElrath, M. J., Zolla-Pazner, S., Tomaras, G. D., Alam, S. M., Evans, D. T., Montefiori, D. C., Karnasuta, C. et al. (2012). Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366 1275–1286.
  • Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47 663–685.
  • Jódar, L., Butler, J., Carlone, G., Dagan, R., Goldblatt, D. and Käyhty, H. (2003). Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 21 3265–3272.
  • Jokinen, J. T. and Åhman, H. (2004). Concentration of antipneumococcal antibodies as a serological correlate of protection: An application to acute otitis media. J. Infect. Dis. 190 545–550.
  • Moodie, Z., Juraska, M., Huang, Y., Zhuang, Y., Fong, Y., Carpp, L. N., Self, S. G., Chambonneau, L., Small, R. et al. (2018). Neutralizing antibody correlates analysis of tetravalent dengue vaccine efficacy trials in Asia and Latin America. J. Infect. Dis. 217 742–753.
  • Pepe, M. S. and Fleming, T. R. (1989). Weighted Kaplan–Meier statistics: A class of distance tests for censored survival data. Biometrics 45 497–507.
  • Prentice, R. (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73 1–11.
  • Prentice, R. L. (1989). Surrogate endpoints in clinical trials: Definition and operational criteria. Stat. Med. 8 431–440.
  • Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Amer. Statist. Assoc. 90 106–121.
  • Siber, G. R., Chang, I., Baker, S., Fernsten, P., O’Brien, K. L. and Santosham, M. (2007). Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine 25 3816–3826.
  • Storsaeter, J., Hallander, H. O., Gustafsson, L. and Olin, P. (1998). Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 16 1907–1916.
  • Vandenbroucke, J. P. and Pearce, N. (2012). Case–control studies: Basic concepts. Int. J. Epidemiol. 41 1480–1489.
  • Villar, L., Dayan, G. H., Arredondo-García, J. L., Rivera, D. M., Cunha, R. and Deseda, C. (2015). Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372 113–123.
  • White, C. J., Kuter, B. J., Ngai, A., Hildebrand, C. S., Isganitis, K. L. and Patterson, C. M. (1992). Modified cases of chickenpox after varicella vaccination: Correlation of protection with antibody response. Pediatr. Infect. Dis. J. 11 19–22.
  • World Health Organization (2017a). Dengue and severe dengue. Available at http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed June, 2018.
  • World Health Organization (2017b). Dengue vaccine research. Available at http://www.who.int/immunization/research/development/dengue_vaccines/en/. Accessed June, 2018.

Supplemental materials

  • R code for computation of nonparametric estimators for thresholds of risk. We provide a repository which includes R functions to compute the proposed nonparametric estimators, as well as code to recreate some of the simulation studies in this paper.