The Annals of Applied Statistics

Complex-valued time series modeling for improved activation detection in fMRI studies

Daniel W. Adrian, Ranjan Maitra, and Daniel B. Rowe

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A complex-valued data-based model with $p$th order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are derived for both models and compared for experimental and simulated data. For a dataset from a right-hand finger-tapping experiment, the activation map obtained using complex-valued modeling more clearly identifies the primary activation region (left functional central sulcus) than the magnitude-only model. Such improved accuracy in mapping the left functional central sulcus has important implications in neurosurgical planning for tumor and epilepsy patients. Additionally, we develop magnitude and phase detrending procedures for complex-valued time series and examine the effect of spatial smoothing. These methods improve the power of complex-valued data-based activation statistics. Our results advocate for the use of the complex-valued data and the modeling of its dependence structures as a more efficient and reliable tool in fMRI experiments over the current practice of using only magnitude-valued datasets.

Article information

Source
Ann. Appl. Stat., Volume 12, Number 3 (2018), 1451-1478.

Dates
Received: December 2016
Revised: September 2017
First available in Project Euclid: 11 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1536652961

Digital Object Identifier
doi:10.1214/17-AOAS1117

Mathematical Reviews number (MathSciNet)
MR3852684

Keywords
Area under the ROC curve contrast-to-noise ratio finger-tapping motor experiment hemodynamic response function Kronecker product neurosurgical planning guide phase information signal-to-noise ratio structured covariance matrix

Citation

Adrian, Daniel W.; Maitra, Ranjan; Rowe, Daniel B. Complex-valued time series modeling for improved activation detection in fMRI studies. Ann. Appl. Stat. 12 (2018), no. 3, 1451--1478. doi:10.1214/17-AOAS1117. https://projecteuclid.org/euclid.aoas/1536652961


Export citation

References

  • Adrian, D. W, Maitra, R. and Rowe, D. B. (2018). Supplement to “complex-valued time series modeling for improved activation detection in fMRI studies.” DOI:10.1214/17-AOAS1117SUPP.
  • Bandettini, P. A., Petridou, N. and Bodurka, J. (2005). Direct detection of neuronal activity with MRI: Fantasy, possibility, or reality? Appl. Magn. Reson. 29 65–88.
  • Bandettini, P. A., Jesmanowicz, A., Wong, E. C. and Hyde, J. S. (1993). Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 161–173.
  • Belliveau, J. W., Kennedy, D. N., McKinstry, R. C., Buchbinder, B. R., Weisskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J. and Rosen, B. R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254 716–719.
  • Brown, Kincaid B. M, T. R. and Ugurbil, K. (1982). NMR chemical shift imaging in three dimensions. Proc. Natl. Acad. Sci. USA 79 3523–3526.
  • Bruce, I. P., Karaman, M. M. and Rowe, D. B. (2011). A statistical examination of SENSE image reconstruction via an isomorphism representation. Magn. Reson. Imag. 29 1267–1287.
  • Bullmore, E., Brammer, M., Williams, S. C. R., Rabe-Hesketh, S., Janot, N., David, A., Mellers, J., Howard, R. and Sham, P. (1996). Statistical methods of estimation and inference for function MR image analysis. Magn. Reson. Med. 35 261–277.
  • Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed.l Res. Internat.l J. 29 162–173.
  • Cox, R. W. (2012). AFNI: What a long strange trip it has been. NeuroImage 62 743–747.
  • Cox, R. W. and Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. NMR Biomed. 10 171–178.
  • Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology 26 297–302.
  • Feng, Z., Caprihan, A., Blagoev, K. B. and Calhoun, V. D. (2009). Biophysical modeling of phase changes in BOLD fMRI. NeuroImage 47 540–548.
  • Fisher, N. I. and Lee, A. J. (1992). Regression models for an angular response. Biometrics 48 665–677.
  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A. and Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn. Reson. Med. 33 636–647.
  • Friston, K. J., Jezzard, P. and Turner, R. (1994). Analysis of functional MRI time-series. Hum. Brain Mapp. 1 153–171.
  • Friston, K. J., Frith, C. D., Liddle, P. F., Dolan, R. J., Lammertsma, A. A. and Frackowiak, R. S. J. (1990). The relationship between global and local changes in PET scans. J. Cereb. Blood Flow Metab. 10 458–466.
  • Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-B., Frith, C. D. and Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain Mapp. 2 189–210.
  • Friston, K. J., Josephs, O., Zarahn, E., Holmes, A. P., Rouqette, S. and Poline, J.-B. (2000). To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis. NeuroImage 12 196–208.
  • Genovese, C. R., Lazar, N. A. and Nichols, T. E. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate:. NeuroImage 15 870–878.
  • Glisson, T. H. (2011). Introduction to Circuit Analysis and Design. Springer, The Netherlands.
  • Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9 416–429.
  • Gudbjartsson, H. and Patz, S. (1995). The Rician distribution of noisy data. Magn. Reson. Med. 34 910–914.
  • Hahn, A. D., Nencka, A. S. and Rowe, D. B. (2009). Improving robustness and reliability of phase-sensitive fMRI analysis using temporal off-resonance alignment of single-echo timeseries (TOAST). NeuroImage 44 742–752.
  • Hahn, A. D., Nencka, A. S. and Rowe, D. B. (2012). Enhancing the utility of complex-valued functional magnetic resonance imaging detection of neurobiological processes through postacquisition estimation and correction of dynamic B(0) errors and motion. Hum. Brain Mapp. 33 288–306.
  • Hahn, A. D. and Rowe, D. B. (2012). Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series. NeuroImage 59 2231–2240.
  • Harnsberger, H. R., Osborn, A. G., Ross, J. S., Moore, K. R., Salzman, K. L., Carrasco, C. R., Halmiton, B. E., Davidson, H. C. and Wiggins, R. H. (2007). Diagnostic and Surgical Imaging Anatomy: Brain, Head and Neck, Spine, 3rd ed. Amirsys, Salt Lake City, UT.
  • Hoogenrad, F. G., Reichenbach, J. R., Haacke, E. M., Lai, S., Kuppusamy, K. and Sprenger, M. (1998). In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 95 tesla by measuring changes in susceptibilty and velocity. Magn. Res. Med. 39 97–107.
  • Jaccard, P. (1901). Ètude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat. 37 547–579.
  • Jain, A. K. (1989). Fundaments of Digital Image Processing. Prentice Hall, New York.
  • Jesmanowicz, A., Nencka, A. and Hyde, J. S. (2014). Direct radiofrequency phase control in MRI by digital waveform playback at the larmor frequency. Magn. Reson. Imag. 71 846–852.
  • Jesmanowicz, A., Wong, E. C. and Hyde, J. S. (1993). Phase correction for EPI using internal reference lines. In Proceedings from the International Society of Magnetic Resonance in Medicine 12 1239.
  • Jezzard, P. and Clare, S. (2001). Principles of nuclear magnetic resonance and MRI. In Functional MRI: An Introduction to Methods (P. Jezzard, P. M. Matthews and S. M. Smith, eds.) 3 67–92. Oxford Univ. Press, New York.
  • Karaman, M., Bruce, I. P. and Rowe, D. B. (2015). Incorporating relaxivities to more accurately reconstruct MR images. Magn. Reson. Imag. 33 374–384.
  • Karaman, M., Nencka, A. S., Bruce, I. P. and Rowe, D. B. (2014). Quantification of the statistical effect of spatiatemporal processing of nontask fMRI data. Brain Connectivity 4 649–661.
  • Kruggel, F. and von Cramon, D. Y. (1999). Modeling the hemodynamic response in single-trial functional MRI experiments. Magn. Res. Med. 42 787–797.
  • Kumar, A., Welti, D. and Ernst, R. R. (1975). NMR Fourier zeugmatography. J. Magn. Res. 18 69–83.
  • Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R., Cheng, H.-M., Brady, T. J. and Rosen, B. R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. In Proceedings from the National Academy of Sciences, USA 89 5675–5679.
  • Lai, S. and Glover, G. (1997). Detection of BOLD fMRI signals using complex data. In Proceedings from the International Society of Magnetic Resonance in Medicine 5 1671.
  • Lazar, N. A. (2008). The Statistical Analysis of Functional MRI Data. Springer, Berlin.
  • Lee, C. C., Jack, C. R. and Riederer, S. J. (1998). Mapping of the central sulcus with functional MR: Active versus passive activation tasks. Amer. J. Neurorad. 19 847–852.
  • Lee, C. C., Ward, H. A., Sharbrough, F. W., Meyer, F. B., Marsh, W. R., Raffel, C., So, E. L., Cascino, G. D., Shin, C., Xu, Y., Riederer, S. J. and Jack, C. R. (1999). Assessment of functional MR imaging in neurosurgical planning. Amer. J. Neurorad. 20 1511–1519.
  • Lee, J., Shahram, M., Schwartzman, A. and Pauly, J. M. (2007). Complex data analysis in high-resolution SSFP fMRI. Magn. Reson. Med. 57 905–917.
  • Ljunggren, S. (1983). A simple graphical representation of Fourier-based imaging methods. J. Magn. Res. 54 338–343.
  • Logan, B. R., Geliazkova, M. P. and Rowe, D. B. (2008). An evaluation of spatial thresholding techniques in fMRI analysis. Hum. Brain Mapp. 29 1379–1389.
  • Logan, B. R. and Rowe, D. B. (2004). An evaluation of thresholding techniques in fMRI analysis. NeuroImage 22 95–108.
  • Maitra, R. (2010). A re-defined and generalized percent-overlap-of-activation measure for studies of fMRI reproducibility and its use in identifying outlier activation maps. NeuroImage 50 124–135.
  • Marchini, J. L. and Ripley, B. D. (2000). A new statistical approach to detecting significant activation in functional MRI. NeuroImage 12 366–380.
  • Menon, R. S. (2002). Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn. Res. Med. 47 1–9.
  • Miller, J. W. (1995). Exact maximum likelihood estimation in autoregressive processes. J. Time Series Anal. 16 607–615.
  • Nan, F. Y. and Nowak, R. D. (1999). Generalized likelihood ratio detection for fMRI using complex data. IEEE Trans. Med. Imag. 18 320–329.
  • Nencka, A. S., Hahn, A. D. and Rowe, D. B. (2008). The use of three navigator echoes in Cartesian EPI reconstruction reduces Nyquist ghosting. In Proceedings from the International Society of Magnetic Resonance in Medicine 16 3032.
  • Nencka, A. S., Hahn, A. D. and Rowe, D. B. (2009). A mathematical model for understanding the STatistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI. J. Neurosci. Met. 181 268–282.
  • Ogawa, S., Lee, T. M., Nayak, A. S. and Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14 68–78.
  • Petridou, N., Schafer, A., Gowland, P. and Bowtell, R. (2009). Phase vs. magnitude information in functional magnetic resonace imaging time series: Toward understanding the noise. Magn. Reson. Imag. 27 1046–1057.
  • Pourahmadi, M. (2001). Foundations of Time Series Analysis and Prediction Theory. Wiley, New York.
  • Purdon, P. L. and Weisskoff, R. M. (1998). Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum. Brain Mapp. 6 239–249.
  • Rosen, B. R. and Savoy, R. L. (2012). fMRI at 20: Has it changed the world? NeuroImage 62 1316–1324.
  • Rowe, D. B. (2005). Modeling both the magnitude and phase of complex-valued fMRI data. NeuroImage 25 1310–1324.
  • Rowe, D. B. (2016). Image Reconstruction in Functional MRI. In Handbook of Neuroimaging Data Analysis 205–232 Chapman & Hall/CRC, London.
  • Rowe, D. B. and Logan, B. R. (2004). A complex way to compute fMRI activation. NeuroImage 23 1078–1092.
  • Rowe, D. B., Meller, C. P. and Hoffman, R. G. (2007). Characterizing phase-only fMRI data with an angular regression model. J. Neurosci. Met. 161 331–341.
  • Rumeau, C., Tzourio, N., Murayama, N., Peretti-Viton, P., Levrier, O., Joliot, M., Mazoyer, B. and Salamon, G. (1994). Location of hand function in the sensorimotor cortex: MR and functional correlation. Amer. J. Neurorad. 15 567–572.
  • Smith, S. M. (2001). Preparing fMRI data for statistical analysis. In Functional MRI: An Introduction to Methods Chapter 12. Oxford Univ. Press, Oxford.
  • Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter/Kongelige Danske Videnskabernes Selskab 5 1–34.
  • Tweig, D. B. (1983). The $k$-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Med. Phys. 10 610–21.
  • Wang, T. and Wei, T. (1994). Statistical analysis of MR imaging and its applications in image modeling. In Proceedings of the IEEE International Conference on Image Proccessing and Neural Networks 1 866–870.
  • Woo, C.-W., Krishnan, A. and Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses. NeuroImage 91 412–419.
  • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J. and Evans, A. C. (1996). A unified statistical approach for determining significant voxels in images of cerebral activation. Hum. Brain Mapp. 4 58–73.
  • Zarahn, E., Aguirre, G. K. and D’Esposito, M. (1997). Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. NeuroImage 5 179–197.
  • Zhao, F., Jin, T., Wang, P., Hu, X. and Kim, S.-G. (2007). Sources of phase changes in BOLD and CBV-weighted fMRI. Magn. Reson. Med. 57 520–527.

Supplemental materials

  • Supplement to “Complex-valued time series modeling for improved activation detection in fMRI studies”. Section S-1 displays the real, imaginary, magnitude, and phase components of the data for all slices of the finger-tapping dataset used in this paper. Section S-2 provides additional details and derivations on our methodology. Further details on the analysis of the finger-tapping dataset are provided in Section S-3 while more simulation-based analyses are in Section S-4.