The Annals of Applied Statistics

Tracking network dynamics: A survey using graph distances

Claire Donnat and Susan Holmes

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

From longitudinal biomedical studies to social networks, graphs have emerged as essential objects for describing evolving interactions between agents in complex systems. In such studies, after pre-processing, the data are encoded by a set of graphs, each representing a system’s state at a different point in time or space. The analysis of the system’s dynamics depends on the selection of the appropriate analytical tools. In particular, after specifying properties characterizing similarities between states, a critical step lies in the choice of a distance between graphs capable of reflecting such similarities.

While the literature offers a number of distances to choose from, their properties have been little investigated and no guidelines regarding the choice of such a distance have yet been provided. In particular, most graph distances consider that the nodes are exchangeable—ignoring node “identities.” Alignment of the graphs according to identified nodes enables us to enhance these distances’ sensitivity to perturbations in the network and detect important changes in graph dynamics. Thus the selection of an adequate metric is a decisive—yet delicate—practical matter.

In the spirit of Goldenberg et al.’s seminal 2009 review [Found. Trends Mach. Learn. 2 (2010) 129–233], this article provides an overview of commonly-used graph distances and an explicit characterization of the structural changes that they are best able to capture. We show how these choices affect real-life situations, and we use these distances to analyze both a longitudinal microbiome dataset and a brain fMRI study. One contribution of the present study is a coordinated suite of data analytic techniques, displays and statistical tests using “metagraphs”: a graph of graphs based on a chosen metric. Permutation tests can uncover the effects of covariates on the graphs’ variability. Furthermore, synthetic examples provide intuition as to the qualities and drawbacks of the different distances. Above all, we provide some guidance on choosing one distance over another in different contexts. Finally, we extend the scope of our analyses from temporal to spatial dynamics and apply these different distances to a network created from worldwide recipes.

Article information

Source
Ann. Appl. Stat., Volume 12, Number 2 (2018), 971-1012.

Dates
Received: November 2017
Revised: March 2018
First available in Project Euclid: 28 July 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1532743483

Digital Object Identifier
doi:10.1214/18-AOAS1176

Mathematical Reviews number (MathSciNet)
MR3834292

Keywords
Temporal networks longitudinal analysis graph distances graph signal processing wavelets microbiome longitudinal analysis

Citation

Donnat, Claire; Holmes, Susan. Tracking network dynamics: A survey using graph distances. Ann. Appl. Stat. 12 (2018), no. 2, 971--1012. doi:10.1214/18-AOAS1176. https://projecteuclid.org/euclid.aoas/1532743483


Export citation

References

  • Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. and Barabási, A.-L. (2011). Flavor network and the principles of food pairing. Sci. Rep. 1 196.
  • Banerjee, A. (2008). The spectrum of the graph Laplacian as a tool for analyzing structure and evolution of networks. Ph.D. thesis, Univ. Leipzig.
  • Banerjee, A. and Jost, J. (2008). Spectral plot properties: Towards a qualitative classification of networks. Netw. Heterog. Media 3 395–411.
  • Barberán, A., Bates, S. T., Casamayor, E. O. and Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6 343–351.
  • Bollobás, B. (1998). Modern Graph Theory. Graduate Texts in Mathematics 184. Springer, New York.
  • Bonato, A., Gleich, D. F., Kim, M., Mitsche, D., Pralat, P., Tian, Y. and Young, S. J. (2014). Dimensionality of social networks using motifs and eigenvalues. PLoS ONE 9 e106052.
  • Chakerian, J. and Holmes, S. (2012). Computational tools for evaluating phylogenetic and hierarchical clustering trees. J. Comput. Graph. Statist. 21 581–599.
  • Champin, P.-A. and Solnon, C. (2003). Measuring the similarity of labeled graphs. In International Conference on Case-Based Reasoning 80–95. Springer, Berlin.
  • Chung, F. (2007). The heat kernel as the PageRank of a graph. Proc. Natl. Acad. Sci. USA 104 19735–19740.
  • Cvetković, D. (2012). Spectral recognition of graphs. Yugosl. J. Oper. Res. 22 145–161.
  • Dethlefsen, L. and Relman, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 108 4554–4561.
  • DiGiulio, D. B., Callahan, B. J., McMurdie, P. J., Costello, E. K., Lyell, D. J., Robaczewska, A., Sun, C. L., Goltsman, D. S., Wong, R. J., Shaw, G. et al. (2015). Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA 112 11060–11065.
  • Donnat, C. and Holmes, S. (2018). Supplement to “Tracking network dynamics: A survey using graph distances.” DOI:10.1214/18-AOAS1176SUPP.
  • Donnat, C., Zitnik, M., Hallac, D. and Leskovec, J. (2017). Spectral graph wavelets for structural role similarity in networks. Preprint. Available at ArXiv:1710.10321.
  • Ferrer, M., Bardají, I., Valveny, E., Karatzas, D. and Bunke, H. (2013). Median graph computation by means of graph embedding into vector spaces. In Graph Embedding for Pattern Analysis 45–71. Springer, Berlin.
  • Fukuyama, J., McMurdie, P. J., Dethlefsen, L., Relman, D. A. and Holmes, S. (2012). Comparisons of distance methods for combining covariates and abundances in microbiome studies. In Biocomputing 2012 213–224. World Scientific, Singapore.
  • Gerber, G. K. (2014). The dynamic microbiome. FEBS Lett. 588 4131–4139.
  • Goldenberg, A., Zheng, A. X., Fienberg, S. E. and Airoldi, E. M. (2010). A survey of statistical network models. Found. Trends Mach. Learn. 2 129–233.
  • Gu, J., Jost, J., Liu, S. and Stadler, P. F. (2016). Spectral classes of regular, random, and empirical graphs. Linear Algebra Appl. 489 30–49.
  • Hammond, D. K., Vandergheynst, P. and Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30 129–150.
  • Hullar, M. A. and Lampe, J. W. (2012). The gut microbiome and obesity. In Obesity Treatment and Prevention: New Directions 73 67–79. Karger, Basel.
  • Ipsen, M. and Mikhailov, A. S. (2002). Evolutionary reconstruction of networks. Phys. Rev. E (3) 66 6–9. DOI:10.1103/PhysRevE.66.046109.
  • Jost, J. and Joy, M. P. (2002). Evolving networks with distance preferences. Phys. Rev. E (3) 66 036126.
  • Jurman, G., Visintainer, R. and Furlanello, C. (2011). An introduction to spectral distances in networks. Frontiers Artificial Intelligence Appl. 226 227–234. DOI:10.3233/978-1-60750-692-8-227.
  • Jurman, G., Visintainer, R., Riccadonna, S., Filosi, M. and Furlanello, C. (2012). A glocal distance for network comparison. Preprint. Available at ArXiv:1201.2931.
  • Jurman, G., Visintainer, R., Filosi, M., Riccadonna, S. and Furlanello, C. (2015). The HIM glocal metric and kernel for network comparison and classification. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015 7 46109. DOI:10.1109/DSAA.2015.7344816.
  • Jurman, G., Filosi, M., Riccadonna, S., Visintainer, R. and Furlanello, C. (2016). Differential network analysis and graph classification: A glocal approach. 1–13.
  • Kelly, C., Zuo, X.-N., Gotimer, K., Cox, C. L., Lynch, L., Brock, D., Imperati, D., Garavan, H., Rotrosen, J., Castellanos, F. X. et al. (2011). Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biological Psychiatry 69 684–692.
  • Kelmans, A. K. (1976). Comparison of graphs by their number of spanning trees. Discrete Math. 16 241–261.
  • Kelmans, A. K. (1997). Transformations of a graph increasing its Laplacian polynomial and number of spanning trees. European J. Combin. 18 35–48.
  • Koutra, D., Parikh, A., Ramdas, A. and Xiang, J. (2011). Algorithms for graph similarity and subgraph matching. In Proc. Ecol. Inference Conf.
  • Koutra, D., Shah, N., Vogelstein, J. T., Gallagher, B. and Faloutsos, C. (2016). DeltaCon: Principled massive-graph similarity function with attribution. ACM Transactions on Knowledge Discovery from Data (TKDD) 10 28.
  • Layeghifard, M., Hwang, D. M. and Guttman, D. S. (2017). Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25 217–228.
  • Levandowsky, M. and Winter, D. (1971). Distance between sets. Nature 234 34–35.
  • Luqman, M. M., Ramel, J.-Y. and Lladós, J. (2013). Multilevel analysis of attributed graphs for explicit graph embedding in vector spaces. In Graph Embedding for Pattern Analysis 1–26. Springer, Berlin.
  • Monnig, N. D. and Meyer, F. G. (2018). The resistance perturbation distance: A metric for the analysis of dynamic networks. Discrete Appl. Math. 236 347–386.
  • Papadimitriou, P., Dasdan, A. and Garcia-Molina, H. (2010). Web graph similarity for anomaly detection. Journal of Internet Services and Applications 1 19–30.
  • Proulx, S. R., Promislow, D. E. and Phillips, P. C. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution 20 345–353.
  • Shimada, Y., Hirata, Y., Ikeguchi, T. and Aihara, K. (2016). Graph distance for complex networks. Sci Rep 6 34944.
  • Shuman, D. I., Ricaud, B. and Vandergheynst, P. (2016). Vertex-frequency analysis on graphs. Appl. Comput. Harmon. Anal. 40 260–291.
  • Shuman, D., Narang, S., Frossard, P., Ortega, A. and Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30 83–98.
  • Spielman, D. A. (2007). Spectral graph theory and its applications. In Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on 29–38. IEEE Press, New York.
  • Tétreault, P., Mansour, A., Vachon-Presseau, E., Schnitzer, T. J., Apkarian, A. V. and Baliki, M. N. (2016). Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biology 14 e1002570.
  • Thüne, M. (2012). Eigenvalues of matrices and graphs. Ph.D. thesis, Univ. Leipzig.
  • Tremblay, N. and Borgnat, P. (2014). Graph wavelets for multiscale community mining. IEEE Trans. Signal Process. 62 5227–5239.
  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 1027–131.
  • Turnbaugh, P. J., Bäckhed, F., Fulton, L. and Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe 3 213–223.
  • Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R. and Borgwardt, K. M. (2010). Graph kernels. J. Mach. Learn. Res. 11 1201–1242.
  • Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J. et al. (2016). Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. The ISME Journal 10 1669–1681.
  • Zager, L. A. and Verghese, G. C. (2008). Graph similarity scoring and matching. Appl. Math. Lett. 21 86–94.

Supplemental materials

  • Supplementary Material to “Tracking network dynamics: A survey using graph distances”. This supplement contains Appendices A–E as referred to in the text.