The Annals of Applied Statistics

A semiparametric method to simulate bivariate space–time extremes

Romain Chailan, Gwladys Toulemonde, and Jean-Noel Bacro

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Coastal hazards raise many concerns, as their assessment involves extremely high economic and ecological stakes. In particular, studies on rarely observed but damaging events are quite numerous. In order to anticipate upcoming events of this kind, specialists need to extrapolate the results of their studies to events that have not yet occurred. Such events might be more extreme than those already observed and could therefore severely impact the coast. It is therefore paramount to propose methodologies to simulate such extreme conditions. Parametric and nonparametric statistical methods have already been used to assess environmental extreme quantities, from univariate framework to spatial context; however, they do not generally focus on the simulation of extreme environmental scenarios. This study introduces a semiparametric approach based on the Extreme Value Theory (EVT), dedicated to the simulation of extreme space–time processes. In the proposed application context, these processes describe near-shore hydraulic conditions. They nourish coastal impact models to assess hazards along the coast. The benefit of this approach is to be able to characterise coastal hazards on an event scale, meaning we can characterise the impact both in space and through time for a given extreme event. The usefulness of this space–time extreme modelling is illustrated by a risk analysis related to the long-shore impact of extreme wave events in the Gulf of Lions.

Article information

Ann. Appl. Stat. Volume 11, Number 3 (2017), 1403-1428.

Received: January 2016
Revised: February 2017
First available in Project Euclid: 5 October 2017

Permanent link to this document

Digital Object Identifier

Space-time extreme processes simulation extreme value modelling extreme waves coastal hazards


Chailan, Romain; Toulemonde, Gwladys; Bacro, Jean-Noel. A semiparametric method to simulate bivariate space–time extremes. Ann. Appl. Stat. 11 (2017), no. 3, 1403--1428. doi:10.1214/17-AOAS1031.

Export citation


  • Bagnold, R. A. (1966). An approach to the sediment transport problem. General Physics Geological Survey, Prof. Paper.
  • Bechler, A., Bel, L. and Vrac, M. (2015). Conditional simulations of the extremal $t$ process: Application to fields of extreme precipitation. Spat. Stat. 12 109–127.
  • Beirlant, J., Goegebeur, Y., Teugels, J. and Segers, J. (2004). Statistics of Extremes. Theory and Applications. Wiley, Chichester.
  • Bortot, P., Coles, S. and Tawn, J. (2000). The multivariate Gaussian tail model: An application to oceanographic data. J. Roy. Statist. Soc. Ser. C 49 31–49.
  • Bouchette, F., Sabatier, F., Sylaios, G., Meulé, S., Liou, J. L., Heurtefeux, H., Denamiel, C. and Hwung, W. (2012). SUBDUNE tool: Quasiexplicit formulation of the water level along the shoreline. Rev. Paralia 12 223–232.
  • Brunel, C., Certain, R., Sabatier, F., Robin, N., Barusseau, J. P., Aleman, N. and Raynal, O. (2014). 20th century sediment budget trends on the Western Gulf of Lions shoreface (France): An application of an integrated method for the study of sediment coastal reservoirs. Geomorphology 204 625–637.
  • Caires, S., de Haan, L. and Smith, R. L. (2011). On the determination of the temporal and spatial evolution of extreme events Technical Report, Deltares. Report 1202120-001-HYE-004 (for Rijkswaterstaat, Centre for Water Management).
  • Campmas, L., Bouchette, F., Meule, S., Petitjean, L., Sous, D., Liou, J.-Y., Leroux-Mallouf, R., Sabatier, F. and Hwung, H.-H. (2014). Typhoons driven morphodynamics of the Wan Tzu Liao sand barrier (Taiwan). Coastal Eng. Proc. 1 sediment–50.
  • Castruccio, S., Huser, R. and Genton, M. G. (2016). High-order composite likelihood inference for max-stable distributions and processes. J. Comput. Graph. Statist. 25 1212–1229.
  • CERC (1984). Shore Protection Manual.
  • Chailan, R. (2015). Application of Scientific Computing and Statistical Analysis to Address Coastal Hazards Ph.D. thesis University of Montpellier.
  • Chailan, R., Toulemonde, G., Bouchette, F., Laurent, A., Sevault, F. and Michaud, H. (2014). Spatial assessment of extreme significant waves heights in the Gulf of Lions. Coastal Eng. Proc. 1 management–17.
  • Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London.
  • Davis, R. A., Klüppelberg, C. and Steinkohl, C. (2013a). Max-stable processes for modeling extremes observed in space and time. J. Korean Statist. Soc. 42 399–414.
  • Davis, R. A., Klüppelberg, C. and Steinkohl, C. (2013b). Statistical inference for max-stable processes in space and time. J. R. Stat. Soc. Ser. B. Stat. Methodol. 75 791–819.
  • Davison, A. C. and Huser, R. (2015). Statistics of extremes. Annu. Rev. Stat. Appl. 2 203–235.
  • Davison, A. C., Padoan, S. A. and Ribatet, M. (2012). Statistical modeling of spatial extremes. Statist. Sci. 27 161–186.
  • de Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab. 12 1194–1204.
  • de Haan, L. and de Ronde, J. (1998). Sea and wind: Multivariate extremes at work. Extremes 1 7–45.
  • de Haan, L. and Ferreira, A. (2006). Extreme Value Theory. Springer, New York.
  • de Haan, L. and Lin, T. (2001). On convergence toward an extreme value distribution in $C[0,1]$. Ann. Probab. 29 467–483.
  • Dieker, A. B. and Mikosch, T. (2015). Exact simulation of Brown-Resnick random fields at a finite number of locations. Extremes 18 301–314.
  • Dombry, C., Engelke, S. and Oesting, M. (2016). Exact simulation of max-stable processes. Biometrika 103 303–317.
  • Dombry, C. and Eyi-Minko, F. (2013). Regular conditional distributions of continuous max-infinitely divisible random fields. Electron. J. Probab. 18 1–21.
  • Dombry, C., Éyi-Minko, F. and Ribatet, M. (2013). Conditional simulation of max-stable processes. Biometrika 100 111–124.
  • Dombry, C. and Ribatet, M. (2015). Functional regular variations, Pareto processes and peaks over threshold. Stat. Interface 8 9–17.
  • Eastoe, E. F. and Tawn, J. A. (2009). Modelling non-stationary extremes with application to surface level ozone. J. R. Stat. Soc. Ser. C. Appl. Stat. 58 25–45.
  • Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events. Applications of Mathematics (New York) 33. Springer, Berlin.
  • Embrechts, P., Koch, E. and Robert, C. (2016). Space-time max-stable models with spectral separability. Adv. in Appl. Probab. 48 77–97.
  • Engelke, S., Malinowski, A., Kabluchko, Z. and Schlather, M. (2015). Estimation of Hüsler-Reiss distributions and Brown-Resnick processes. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 239–265.
  • Ferreira, A. and de Haan, L. (2014). The generalized Pareto process; with a view towards application and simulation. Bernoulli 20 1717–1737.
  • Gouldby, B., Méndez, F. J., Guanche, Y., Rueda, A. and Mínguez, R. (2014). A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis. Coastal Eng. 88 15–26.
  • Groeneweg, J., Caires, S. and Roscoe, K. (2012). Temporal and spatial evolution of extreme events. Coastal Eng. Proc. 1 management–9.
  • Gutierrez, B. T., Plant, N. G., Thieler, E. R. and Turecek, A. (2015). Using a Bayesian network to predict barrier island geomorphologic characteristics. J. Geophys. Res., Earth Surf. 120 2452–2475.
  • Herrmann, M. and Somot, S. (2008). Relevance of ERA40 dynamical downscaling for modeling deep convection in the Mediterranean Sea. Geophys. Res. Lett. 35.
  • Herrmann, M., Sevault, F., Beuvier, J. and Somot, S. (2010). What induced the exceptional 2005 convection event in the northwestern Mediterranean basin? Answers from a modeling study. J. Geophys. Res., Oceans (19782012) 115.
  • Huser, R. and Davison, A. C. (2013). Composite likelihood estimation for the Brown-Resnick process. Biometrika 100 511–518.
  • Huser, R. and Davison, A. C. (2014). Space-time modelling of extreme events. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 439–461.
  • Jonathan, P., Ewans, K. and Randell, D. (2013). Joint modelling of extreme ocean environments incorporating covariate effects. Coastal Eng. 79 22–31.
  • Lantuéjoul, C. and Bel, L. (2014). Simulation conditionnelle du processus de Schlather. In 46èmes Journées de Statistique de la SFdS.
  • Michaud, H. (2011). Impacts des vagues sur les courants marins: Modélisation multi-échelle de la plage au plateau continental Ph.D. thesis Université Montpellier II-Sciences et Techniques du Languedoc.
  • Michaud, H., Robin, N., Estournel, C., Marsaleix, P., Leredde, Y., Certain, R. and Bouchette, F. (2013). 3D hydrodynamic modeling of a microtidal barred beach (Sète, NW Mediterranean Sea) during storm conditions. In Proc. 7th Int. Conf. on Coastal Dynamics, Arcachon France 139 1183–1194.
  • Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010). Likelihood-based inference for max-stable processes. J. Amer. Statist. Assoc. 105 263–277.
  • Raillard, N., Ailliot, P. and Yao, J. (2014). Modeling extreme values of processes observed at irregular time steps: Application to significant wave height. Ann. Appl. Stat. 8 622–647.
  • Rascle, N. and Ardhuin, F. (2013). A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Model. 70 174–188.
  • Ribatet, M., Cooley, D. and Davison, A. C. (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statist. Sinica 22 813–845.
  • Schlather, M. and Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 139–156.
  • Shaby, B. A. (2014). The open-faced sandwich adjustment for MCMC using estimating functions. J. Comput. Graph. Statist. 23 853–876.
  • Shaby, B. A. and Reich, B. J. (2012). Bayesian spatial extreme value analysis to assess the changing risk of concurrent high temperatures across large portions of European cropland. Environmetrics 23 638–648.
  • Smith, R. L. (1990). Max-stable processes and spatial extremes. Preprint. Univ. Surrey.
  • Thibaud, E. and Opitz, T. (2015). Efficient inference and simulation for elliptical Pareto processes. Biometrika 102 855–870.
  • Tolman, H. L. (2014). User Manual and System Documentation of WAVEWATCH III® version 4.18. Technical Report 316.
  • Wadsworth, J. L. and Tawn, J. A. (2014). Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101 1–15.
  • Wang, Y. and Stoev, S. A. (2011). Conditional sampling for spectrally discrete max-stable random fields. Adv. in Appl. Probab. 43 461–483.