The Annals of Applied Statistics

Stochastic modelling and inference in electronic hospital databases for the spread of infections: Clostridium difficile transmission in Oxfordshire hospitals 2007–2010

Madeleine Cule and Peter Donnelly

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The combination of genetic information with electronic patient records promises to provide a powerful new resource for understanding human disease and its treatment. Here we develop and apply a novel stochastic compartmental model to a large dataset on Clostridium difficile infection (CDI) in three Oxfordshire hospitals over a 2.5 year period which combines genetic information on 858 confirmed cases of CDI with a database of 750,000 patient records. C. difficile is a major cause of healthcare-associated diarrhoea and is responsible for substantial mortality and morbidity, with relatively little known about its biology or its transmission epidemiology. Bayesian analysis of our model, via Markov chain Monte Carlo, provides new information about the biology of CDI, including genetic heterogeneity in infectiousness across different sequence types, and evidence for ward contamination as a significant mode of transmission, and allows inferences about the contribution of particular individuals, wards or hospitals to transmission of the bacterium, and assessment of changes in these over time following changes in hospital practice. Our work demonstrates the value of using statistical modelling and computational inference on large-scale hospital patient databases and genetic data.

Article information

Ann. Appl. Stat. Volume 11, Number 2 (2017), 655-679.

Received: June 2013
Revised: July 2016
First available in Project Euclid: 20 July 2017

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier

Stochastic modelling Markov chain Monte Carlo medicine


Cule, Madeleine; Donnelly, Peter. Stochastic modelling and inference in electronic hospital databases for the spread of infections: Clostridium difficile transmission in Oxfordshire hospitals 2007–2010. Ann. Appl. Stat. 11 (2017), no. 2, 655--679. doi:10.1214/16-AOAS1011.

Export citation


  • Bartlett, J. G., Chang, T. E. W., Gurwith, M., Gorbach, S. L. and Onderdonk, A. B. (1978). Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N. Engl. J. Med. 298 531–534.
  • Best, E. L., Fawley, W. N., Parnell, P. and Wilcox, M. H. (2010). The potential for airborne dispersal of Clostridium difficile from symptomatic patients. Clin. Infect. Dis. 50 1450–1457.
  • Bobulsky, G. S., Al-Nassir, W. N., Riggs, M. M., Sethi, A. K. and Donskey, C. J. (2008). Clostridium difficile skin contamination in patients with C. difficile-associated disease. Clin. Infect. Dis. 46 447–450.
  • Bourdain, A. (2001). Typhoid Mary: An Urban Historical. Bloomsbury, New York.
  • Cooper, B. S., Medley, G. F., Bradley, S. J. and Scott, G. M. (2008). An augmented data method for the analysis of nosocomial infection data. Am. J. Epidemiol. 168 548–557.
  • Cooper, B. S., Kypraios, T., Batra, R., Wyncoll, D., Tosas, O. and Edgeworth, J. D. (2012). Quantifying type-specific reproduction numbers for nosocomial pathogens: Evidence for heightened transmission of an Asian sequence type 239 MRSA clone. PLoS Comput. Biol. 8 e1002454.
  • Cule, M. and Donnelly, P. (2017). Supplement to “Stochastic modelling and inference in electronic hospital databases for the spread of infections: Clostridium difficile transmission in Oxfordshire hospitals 2007–2010.” DOI:10.1214/16-AOAS1011SUPP.
  • Donskey, C. J. (2010). Preventing transmission of Clostridium difficile: Is the answer blowing in the wind? Clin. Infect. Dis. 50 1458–1461.
  • Finney, J. M., Walker, A. S., Peto, T. E. A. and Wyllie, D. H. (2011). An efficient record linkage scheme using graphical analysis for identifier error detection. BMC Med. Inform. Decis. Mak. 11 7.
  • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1998). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
  • Griffiths, D., Fawley, W., Kachrimanidou, M., Bowden, R., Crook, D. W., Fung, R., Golubchik, T., Harding, R. M., Jeffery, K. J. M., Jolley, K. A., Kirton, R., Peto, T. E. A., Rees, G., Stoesser, N., Vaughan, A., Walker, A. S., Young, B. C., Wilcox, M. and Dingle, K. E. (2010). Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 48 770–778.
  • Health Protection Agency (2009). Voluntary surveillance of Clostridium difficile in England, Wales and Northern Ireland, 2008.
  • Health Protection Agency (2010). Clostridium difficile Ribotyping Network (CDRN) for England and Northern Ireland Annual Report 2010/2011.
  • Johnson, S. (2009). Recurrent Clostridium difficile infection: A review of risk factors, treatments, and outcomes. J. Infect. 58 403–410.
  • Karas, J. A., Enoch, D. A. and Aliyu, S. H. (2010). A review of mortality due to Clostridium difficile infection. J. Infect. 61 1–8.
  • Kypraios, T., Neill, P. D. O., Huang, S. S., Rifas-shiman, S. L. and Cooper, B. S. (2010). Assessing the role of undetected colonization and isolation precautions in reducing methicillin-resistant Staphylococcus aureus transmission in intensive care units. BMC Infect. Dis.
  • Lanzas, C., Dubberke, E. R., Lu, Z., Reske, K. A. and Gröhn, Y. T. (2011). Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect. Control Hosp. Epidemiol. 32 553–561.
  • Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. and Getz, W. M. (2005). Superspreading and the effect of individual variation on disease emergence. Nature 438 355–359.
  • Loo, V. G., Bourgault, A.-M., Poirier, L., Lamothe, F., Michaud, S., Turgeon, N., Toye, B., Beaudoin, A., Frost, E. H., Gilca, R., Brassard, P., Dendukuri, N., Béliveau, C., Oughton, M., Brukner, I. and Dascal, A. (2011). Host and pathogen factors for Clostridium difficile infection and colonization. N. Engl. J. Med. 365 1693–1703.
  • McDonald, L. L. C., Killgore, G. E., Thompson, A., Owens Jr, R. C., Kazakova, S. V., Sambol, S. P., Johnson, S. and Gerding, D. N. (2005). An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 353 2433–2441.
  • McFarland, L. V., Mulligan, M. E., Kwok, R. Y. Y. and Stamm, W. E. (1989). Nosocomial acquisition of Clostridium difficile infection. N. Engl. J. Med. 320 204–210.
  • Planche, T., Aghaizu, A., Holliman, R., Riley, P., Poloniecki, J., Breathnach, A. and Krishna, S. (2008). Diagnosis of Clostridium difficile infection by toxin detection kits: A systematic review. Lancet, Infect. Dis. 8 777–784.
  • Rolfe, R. D. (1988). Asymptomatic intestinal colonization by Clostridium difficile. In Clostridium Difficile: Its Role in Intestinal Disease 201–225. Academic Press, San Diego, CA.
  • Starr, J. M. and Campbell, A. (2001). Mathematical modeling of Clostridium difficile infection. Clin. Microbiol. Infect. 7 432–437.
  • Starr, J. M., Campbell, A., Renshaw, E., Poxton, I. R. and Gibson, G. J. (2009). Spatio-temporal stochastic modelling of Clostridium difficile. J. Hosp. Infect. 71 49–56.
  • Walker, A. S., Eyre, D. W., Wyllie, D. H., Dingle, K. E., Harding, R. M., O’Connor, L., Griffiths, D., Vaughan, A., Finney, J. M., Wilcox, M. H., Crook, D. W., Peto, T. E. A. and Walker, A. S. (2011). Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med. 9 e1001172.
  • Wilcox, M. and Fawley, W. (2000). Hospital disinfectants and spore formation by Clostridium difficile. Lancet 356 1324–1324.

Supplemental materials

  • Supplement to “Stochastic modelling and inference in electronic hospital databases for the spread of infections: Clostridium difficile transmission in Oxfordshire hospitals 2007–2010”. Full likelihood derivation, full results and sensitivity analysis to accompany “Stochastic modelling and inference in electronic hospital databases for the spread of infections: Clostridium difficile transmission in Oxfordshire hospitals 2007–2010.”.