The Annals of Applied Statistics

Biomass prediction using a density-dependent diameter distribution model

Erin M. Schliep, Alan E. Gelfand, James S. Clark, and Bradley J. Tomasek

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Prediction of aboveground biomass, particularly at large spatial scales, is necessary for estimating global-scale carbon sequestration. Since biomass can be measured only by sacrificing trees, total biomass on plots is never observed. Rather, allometric equations are used to convert individual tree diameter to individual biomass, perhaps with noise. The values for all trees on a plot are then summed to obtain a derived total biomass for the plot. Then, with derived total biomasses for a collection of plots, regression models, using appropriate environmental covariates, are employed to attempt explanation and prediction. Not surprisingly, when out-of-sample validation is examined, such a model will predict total biomass well for holdout data because it is obtained using exactly the same derived approach.

Apart from the somewhat circular nature of the regression approach, it also fails to employ the actual observed plot level response data. At each plot, we observe a random number of trees, each with an associated diameter, producing a sample of diameters. A model based on this random number of tree diameters provides understanding of how environmental regressors explain abundance of individuals, which in turn explains individual diameters.

We incorporate density dependence because the distribution of tree diameters over a plot of fixed size depends upon the number of trees on the plot. After fitting this model, we can obtain predictive distributions for individual-level biomass and plot-level total biomass. We show that predictive distributions for plot-level biomass obtained from a density-dependent model for diameters will be much different from predictive distributions using the regression approach. Moreover, they can be more informative for capturing uncertainty than those obtained from modeling derived plot-level biomass directly.

We develop a density-dependent diameter distribution model and illustrate with data from the national Forest Inventory and Analysis (FIA) database. We also describe how to scale predictions to larger spatial regions. Our predictions agree (in magnitude) with available wisdom on mean and variation in biomass at the hectare scale.

Article information

Source
Ann. Appl. Stat., Volume 11, Number 1 (2017), 340-361.

Dates
Received: April 2016
Revised: September 2016
First available in Project Euclid: 8 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1491616884

Digital Object Identifier
doi:10.1214/16-AOAS1007

Mathematical Reviews number (MathSciNet)
MR3634327

Zentralblatt MATH identifier
1366.62263

Keywords
Allometry big O behavior hierarchical models Markov chain Monte Carlo Poisson process

Citation

Schliep, Erin M.; Gelfand, Alan E.; Clark, James S.; Tomasek, Bradley J. Biomass prediction using a density-dependent diameter distribution model. Ann. Appl. Stat. 11 (2017), no. 1, 340--361. doi:10.1214/16-AOAS1007. https://projecteuclid.org/euclid.aoas/1491616884


Export citation

References

  • Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P., Dubayah, R., Friedl, M., Samanta, S. and Houghton, R. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change 2 182–185.
  • Bechtold, W. A. and Patterson, P. L. (2005). The enhanced forest inventory and analysis program: National sampling design and estimation procedures. Technical report, US Department of Agriculture Forest Service, Southern Research Station Asheville, NC.
  • Blackard, J., Finco, M., Helmer, E., Holden, G., Hoppus, M., Jacobs, D., Lister, A., Moisen, G., Nelson, M., Riemann, R., Ruefenacht, B., Salajanu, D., Weyermann, D., Winterberger, K., Brandeis, T., Czaplewski, R., McRoberts, R., Patterson, P. and Tymcio, R. (2008). Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment 112 1658–1677.
  • Brzostek, E. R., Dragoni, D., Schmid, H. P., Rahman, A. F., Sims, D., Wayson, C. A., Johnson, D. J. and Phillips, R. P. (2014). Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Change Biol. 20 2531–2539.
  • Camarero, J. J., Gazol, A., Galván, J. D., Sangüesa-Barreda, G. and Gutiérrez, E. (2015). Disparate effects of global-change drivers on mountain conifer forests: Warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Glob. Change Biol. 21 738–749.
  • Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S. and Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 359 409–420.
  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martinez-Yrizar, A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G. and Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20 3177–3190.
  • Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V. and Hughes, M. K. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sensing of Environment 84 393–410.
  • Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1995). Efficient parameterisations for normal linear mixed models. Biometrika 82 479–488.
  • Henry, M., Bombelli, A., Trotta, C., Alessandrini, A., Birigazzi, L., Sola, G., Vieilledent, G., Santenoise, P., Longuetaud, F., Valentini, R., Picard, N. and Saint-André, L. (2013). Globallometree: International platform for tree allometric equations to support volume, biomass and carbon assessment. IForest-Biogeosciences and Forestry 6 326.
  • Jenkins, J. C., Chojnacky, D. C., Heath, L. S. and Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science 49 12–35.
  • Lambert, M., Ung, C. and Raulier, F. (2005). Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research 35 1996–2018.
  • Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Vargas, P. N., Pitman, N. C. A., Quesada, C. A., Salomão, R., Silva, J. N. M., Lezama, A. T., Terborgh, J., Martínes, R. V. and Vinceti, B. (2006). The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Change Biol. 12 1107–1138.
  • McRoberts, R. E., Moser, P., Zimermann Oliveira, L. and Vibrans, A. C. (2015). A general method for assessing the effects of uncertainty in individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration. Canadian Journal of Forest Research 45 44–51.
  • Molto, Q., Rossi, V. and Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods Ecol. Evol. 4 175–183.
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S. and Hayes, D. (2011). A large and persistent carbon sink in the worlds forests. Science 333 988–993.
  • Picard, N., Saint-André, L. and Henry, M. (2012). Manual for building tree volume and biomass allometric equations: From field measurement to prediction. Technical report, FAO/CIRAD.
  • Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M. and Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 108 9899–9904.
  • Schliep, E. M., Gelfand, A. E., Clark, J. S. and Zhu, K. (2016). Modeling change in forest biomass across the eastern US. Environ. Ecol. Stat. 23 23–41.
  • Shugart, H., Saatchi, S. and Hall, F. (2010). Importance of structure and its measurement in quantifying function of forest ecosystems. Journal of Geophysical Research: Biogeosciences 115.
  • Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, A., Kompter, E., Ahrens, B., Levick, S. R. and Schmullius, C. (2014). Carbon stock and density of northern boreal and temperate forests. Global Ecology and Biogeography 23 297–310.
  • Ung, C.-H., Bernier, P. and Guo, X.-J. (2008). Canadian national biomass equations: New parameter estimates that include British Columbia data. Canadian Journal of Forest Research 38 1123–1132.
  • Whittaker, R. H. and Woodwell, G. M. (1968). Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. The Journal of Ecology 1–25.
  • Wilson, B. T., Woodall, C. W. and Griffith, D. M. (2013). Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance and Management 8 1–15.