Annals of Applied Statistics

Efficient estimation of age-specific social contact rates between men and women

Jan van de Kassteele, Jan van Eijkeren, and Jacco Wallinga

Full-text: Open access

Abstract

Social contact patterns reveal with whom individuals tend to socialize, and therefore to whom they transmit respiratory infections. We infer highly detailed age-specific contact rates between the sexes using a hierarchical Bayesian model that smooths while simultaneously guaranteeing the inherent reciprocity of contact rates. Application of this approach to social contact data from a large prospective survey confirms a tendency that people, especially children and adolescents, mostly contact other people of their own age and sex, and reveals that women have more contact with children than men. These findings imply different exposure patterns between the two sexes for specific age groups, which agrees with available observations.

Article information

Source
Ann. Appl. Stat., Volume 11, Number 1 (2017), 320-339.

Dates
Received: August 2016
Revised: November 2016
First available in Project Euclid: 8 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1491616883

Digital Object Identifier
doi:10.1214/16-AOAS1006

Mathematical Reviews number (MathSciNet)
MR3634326

Zentralblatt MATH identifier
1366.62251

Keywords
Social contact patterns hierarchical Bayesian model Gaussian Markov random field integrated nested Laplace approximations infectious disease transmission

Citation

van de Kassteele, Jan; van Eijkeren, Jan; Wallinga, Jacco. Efficient estimation of age-specific social contact rates between men and women. Ann. Appl. Stat. 11 (2017), no. 1, 320--339. doi:10.1214/16-AOAS1006. https://projecteuclid.org/euclid.aoas/1491616883


Export citation

References

  • Borgdorff, M. W., Nagelkerke, N. J. D., Dye, C. and Nunn, P. (2000). Gender and tuberculosis: A comparison of prevalence surveys with notification data to explore sex differences in case detection. Int. J. Tuberc. Lung Dis. 4 123–132.
  • Brown, A. C. and Moss, W. J. (2010). Sex, pregnancy and measles. In Sex Hormones and Immunity to Infection (S. L. Klein and C. Roberts, eds.) 281–302. Springer, Berlin, Heidelberg.
  • Cauchemez, S., Bhattarai, A., Marchbanks, T. L., Fagan, R. P., Ostroff, S., Ferguson, N. M., Swerdlow, D., Sodha, S. V., Moll, M. E., Angulo, F. J., Palekar, R., Archer, W. R. and Finelli, L. (2011). Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc. Natl. Acad. Sci. USA 108 2825–2830.
  • Conlan, A. J. K., Eames, K. T. D., Gage, J. A., von Kirchbach, J. C., Ross, J. V., Saenz, R. A. and Gog, J. R. (2011). Measuring social networks in British primary schools through scientific engagement. Proc. R. Soc. Lond., B Biol. Sci. 278 1467–1475.
  • Currie, I. D., Durban, M. and Eilers, P. H. (2004). Smoothing and forecasting mortality rates. Stat. Model. 4 279–298.
  • Czado, C., Gneiting, T. and Held, L. (2009). Predictive model assessment for count data. Biometrics 65 1254–1261.
  • Danon, L., Read, J. M., House, T. A., Vernon, M. C. and Keeling, M. J. (2013). Social encounter networks: Characterizing Great Britain. Proc. R. Soc. Lond., B Biol. Sci. 280 20131037.
  • Davis, N. F., McGuire, B. B., Mahon, J. A., Smyth, A. E., O’Malley, K. J. and Fitzpatrick, J. M. (2010). The increasing incidence of mumps orchitis: A comprehensive review. BJU Int. 105 1060–1065.
  • Dawid, A. P. (1984). Present position and potential developments: Some personal views: Statistical theory: The prequential approach. J. R. Stat. Soc. A, General 147 278–292.
  • Dodd, P. J., Looker, C., Plumb, I. D., Bond, V., Schaap, A., Shanaube, K., Muyoyeta, M., Vynnycky, E., Godfrey-Faussett, P., Corbett, E. L., Beyers, N., Ayles, H. and White, R. G. (2016). Age- and sex-specific social contact patterns and incidence of mycobacterium tuberculosis infection. Am. J. Epidemiol. 183 156–166.
  • Eames, K., Bansal, S., Frost, S. and Riley, S. (2015). Six challenges in measuring contact networks for use in modelling. Epidemics 10 72–77.
  • Edmunds, W. J., O’Callaghan, C. J. and Nokes, D. J. (1997). Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc. R. Soc. Lond., B Biol. Sci. 264 949–957.
  • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with $B$-splines and penalties. Statist. Sci. 11 89–121. With comments and a rejoinder by the authors.
  • Falagas, M. E., Mourtzoukou, E. G. and Vardakas, K. Z. (2007). Sex differences in the incidence and severity of respiratory tract infections. Respir. Med. 101 1845–1863.
  • Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Stat. Comput. 24 997–1016.
  • Goeyvaerts, N., Hens, N., Ogunjimi, B., Aerts, M., Shkedy, Z., Damme, P. V. and Beutels, P. (2010). Estimating infectious disease parameters from data on social contacts and serological status. J. R. Stat. Soc. Ser. C. Appl. Stat. 59 255–277.
  • Hens, N., Goeyvaerts, N., Aerts, M., Shkedy, Z., Damme, P. V. and Beutels, P. (2009). Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium. BMC Infect. Dis. 9 5.
  • Hens, N., Shkedy, Z., Aerts, M., Faes, C., Van Damme, P. and Beutels, P. (2012). Modeling Infectious Disease Parameters Based on Serological and Social Contact Data: A Modern Statistical Perspective. Springer, New York.
  • Holmes, C. B., Hausler, H. and Nunn, P. (1998). A review of sex differences in the epidemiology of tuberculosis. Int. J. Tuberc. Lung Dis. 2 96–104.
  • Keeling, M. J. and White, P. J. (2011). Targeting vaccination against novel infections: Risk, age and spatial structure for pandemic influenza in Great Britain. J. R. Soc. Interface 8 661–670.
  • Klein, S. L., Passaretti, C., Anker, M., Olukoya, P. and Pekosz, A. (2010). The impact of sex, gender and pregnancy on 2009 H1N1 disease. Biology Sex Differ. 1 1–12.
  • Kucharski, A. J., Kwok, K. O., Wei, V. W. I., Cowling, B. J., Read, J. M., Lessler, J., Cummings, D. A. and Riley, S. (2014). The contribution of social behaviour to the transmission of influenza A in a human population. PLoS Pathog. 10 e1004206.
  • Kwok, K. O., Cowling, B. J., Wei, V. W. I., Wu, K. M., Read, J. M., Lessler, J., Cummings, D. A., Peiris, J. S. M. and Riley, S. (2014). Social contacts and the locations in which they occur as risk factors for influenza infection. Proc. R. Soc. Lond., B Biol. Sci. 281 20140709.
  • Lang, S. and Brezger, A. (2004). Bayesian P-splines. J. Comput. Graph. Statist. 13 183–212.
  • Medlock, J. and Galvani, A. P. (2009). Optimizing influenza vaccine distribution. Science 325 1705–1708.
  • Mehl, M. R., Vazire, S., Ramírez-Esparza, N., Slatcher, R. B. and Pennebaker, J. W. (2007). Are women really more talkative than men? Science 317 82.
  • Miller, E., Hoschler, K., Hardelid, P., Stanford, E., Andrews, N. and Zambon, M. (2010). Incidence of 2009 pandemic influenza A H1N1 infection in England: A cross-sectional serological study. Lancet 375 1100–1108.
  • Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G. S., Wallinga, J., Heijne, J., Sadkowska-Todys, M., Rosinska, M. and Edmunds, W. J. (2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5 e74.
  • Neyrolles, O. and Quintana-Murci, L. (2009). Sexual inequality in tuberculosis. PLoS Med. 6 e1000199.
  • Pass, R. F., Zhang, C., Evans, A., Simpson, T., Andrews, W., Huang, M.-L., Corey, L., Hill, J., Davis, E., Flanigan, C. and Cloud, G. (2009). Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 360 1191–1199.
  • Polak, M. F. (1959). Influenzasterfte in de herfst van 1957. Ned. Tijdschr. Geneeskd. 103 1098–109.
  • Read, J. M., Edmunds, W. J., Riley, S., Lessler, J. and Cummings, D. A. T. (2012). Close encounters of the infectious kind: Methods to measure social mixing behaviour. Epidemiol. Infect. 140 2117–2130.
  • Rohani, P., Zhong, X. and King, A. A. (2010). Contact network structure explains the changing epidemiology of pertussis. Science 330 982–985.
  • Roos, M., Martins, T. G., Held, L. and Rue, H. (2015). Sensitivity analysis for Bayesian hierarchical models. Bayesian Anal. 10 321–349.
  • Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications, 1st ed. Chapman & Hall/CRC, Boca Raton, FL.
  • Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319–392.
  • Salathé, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W. and Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. USA 107 22020–22025.
  • StatLine (2015). Population on 1 January by age and sex. Available at http://statline.cbs.nl/Statweb/search/?Q=population&LA=EN.
  • van de Kassteele, J., van Eijkeren, J. and Wallinga, J. (2017). Supplement to “Efficient estimation of age-specific social contact rates between men and women.” DOI:10.1214/16-AOAS1006SUPP.
  • Vynnycky, E. and White, R. (2010). An Introduction to Infectious Disease Modelling. Oxford Univ. Press, Oxford.
  • Wallinga, J., Teunis, P. and Kretzschmar, M. (2006). Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am. J. Epidemiol. 164 936–944.
  • Wallinga, J., van Boven, M. and Lipsitch, M. (2010). Optimizing infectious disease interventions during an emerging epidemic. Proc. Natl. Acad. Sci. USA 107 923–928.
  • Watanabe, S. (2013). A widely applicable Bayesian information criterion. J. Mach. Learn. Res. 14 867–897.
  • Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca Raton, FL.
  • Young, N. S. and Brown, K. E. (2004). Parvovirus B19. N. Engl. J. Med. 350 586–597.

Supplemental materials

  • Supplementary material: Efficient estimation of age-specific social contact rates between men and women. In the Supplementary Material we describe the data pre-procession steps, the construction of the node IDs and structure matrix, and how the model is implemented in INLA. We further describe how to aggregate the contact intensities and rates. All are accompanied by R code. A table is provided with age- and sex-specific contact intensities and rates.