The Annals of Applied Statistics

Open models for removal data

Eleni Matechou, Rachel S. McCrea, Byron J. T. Morgan, Darryn J. Nash, and Richard A. Griffiths

Full-text: Open access

Abstract

Individuals of protected species, such as amphibians and reptiles, often need to be removed from sites before development commences. Usually, the population is considered to be closed. All individuals are assumed to (i) be present and available for detection at the start of the study period and (ii) remain at the site until the end of the study, unless they are detected. However, the assumption of population closure is not always valid. We present new removal models which allow for population renewal through birth and/or immigration, and population depletion through sampling as well as through death/emigration. When appropriate, productivity may be estimated and a Bayesian approach allows the estimation of the probability of total population depletion. We demonstrate the performance of the models using data on common lizards, Zootoca vivipara, and great crested newts, Triturus cristatus.

Article information

Source
Ann. Appl. Stat., Volume 10, Number 3 (2016), 1572-1589.

Dates
Received: December 2015
Revised: May 2016
First available in Project Euclid: 28 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1475069619

Digital Object Identifier
doi:10.1214/16-AOAS949

Mathematical Reviews number (MathSciNet)
MR3553236

Zentralblatt MATH identifier
06775278

Keywords
Common lizard depletion great crested newts RJMCMC stopover model

Citation

Matechou, Eleni; McCrea, Rachel S.; Morgan, Byron J. T.; Nash, Darryn J.; Griffiths, Richard A. Open models for removal data. Ann. Appl. Stat. 10 (2016), no. 3, 1572--1589. doi:10.1214/16-AOAS949. https://projecteuclid.org/euclid.aoas/1475069619


Export citation

References

  • Avery, R. A. (1975). Clutch size and reproductive effort in the lizard Lacerta vivipara Jacquin. Oecologia 19 165–170.
  • Barker, R. J. (1997). Joint modeling of live recapture, tag-resight and tag-recovery data. Biometrics 53 666–677.
  • Beebee, T. J. C. and Griffiths, R. A. (2000). Amphibians and Reptiles. HarperCollins, London.
  • Besbeas, P., Freeman, S. N., Morgan, B. J. T. and Catchpole, E. A. (2002). Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58 540–547.
  • Bohrmann, T. F. and Christman, M. C. (2013). Optimal allocation of sampling effort in depletion surveys. J. Agric. Biol. Environ. Stat. 18 218–233.
  • Brooks, S. P., Freeman, S. N., Greenwood, J. J. D., King, R. and Mazzetta, C. (2008). Quantifying conservation concern—Bayesian statistics, birds and the red lists. Biological Conservation 141 1436–1441.
  • Cole, D. J. and McCrea, R. S. (2016). Parameter redundancy in discrete state-space and integrated models. Biom. J. To appear.
  • Defra (2015). https://www.gov.uk/guidance/reptiles-protection-surveys-and-licences. Natural England/Defra.
  • Dorazio, R. M., Jelks, H. L. and Jordan, F. (2005). Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations. Biometrics 61 1093–1101.
  • Dorazio, R. M., Mukherjee, B., Zhang, L., Ghosh, M., Jelks, H. L. and Jordan, F. (2008). Modeling unobserved sources of heterogeneity in animal abundance using a Dirichlet process prior. Biometrics 64 635–644.
  • Gent, T. and Gibson, S. E. (1998). Herpetofauna Workers’ Manual. Joint Nature Conservation Committee, Peterborough.
  • Germano, J. M., Field, K. J., Griffiths, R. A., Clulow, S., Foster, J., Harding, G. and Swaisgood, R. R. (2015). Mitigation-driven translocations: Are we moving wildlife in the right direction? Frontiers in Ecology and the Environment 13 100–105.
  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711–732.
  • HGBI (1998). Herpetofauna Groups of Britain and Ireland—Evaluating Local Mitigation/translocation Programmes: Maintaining Best Practice and Lawful Standards. HGBI Advisory Notes for Amphibian and Reptile groups. Preprint.
  • Joppa, L. N., Williams, K. R., Temple, S. A. and Casper, G. S. (2009). Environmental factors affecting sampling success of artifical cover objects. Herpetological Conservation and Biology 5 143–148.
  • Kendall, W. L. and Nichols, J. D. (2002). Estimating state-transition probabilities for unobservable states using capture-recapture/resighting data. Ecology 83 3276–3284.
  • Kendall, W. L., Nichols, J. D. and Hines, J. E. (1997). Estimating temporary emigration using capture-recapture data with Pollock’s robust design. Ecology 78 563–578.
  • Lewis, B., Griffiths, R. A., Wilkinson, J. W. and Arnell, A. (2014). Examining the Fate of Local Great Crested Newt Populations Following Licensed Developments. Report WM031, London: Department for Environment, Food and Rural Affairs.
  • Matechou, E., Dennis, E. B., Freeman, S. N. and Brereton, T. (2014). Monitoring abundance and phenology in (multivoltine) butterfly species: A novel mixture model. Journal of Applied Ecology 51 766–775.
  • Matechou, E., Nicholls, G., Morgan, B. J. T., Collazo, J. A. and Lyons, J. E. (2015). Bayesian analysis of Jolly–Seber type models; incorporating heterogeneity in arrival and departure. Environ. Ecol. Stat. To appear. DOI:10.1007/s10651-016-0352-0.
  • Matechou, E., McCrea, R. S., Morgan, B. J. T., Nash, J. D. and Griffiths, R. A. (2016). Supplement to “Open models for removal data.” DOI:10.1214/16-AOAS949SUPP.
  • McCrea, R. S. and Morgan, B. J. T. (2014). Analysis of Capture–Recapture Data. Chapman & Hall/CRC, Boca Raton, FL.
  • Moran, P. A. P. (1951). A mathematical theory of animal trapping. Biometrika 38 307–311.
  • Morgan, B. J. T. (2009). Applied Stochastic Modelling, 2nd ed. CRC Press, Boca Raton, FL.
  • Pledger, S. (2000). Unified maximum likelihood estimates for closed capture-recapture models using mixtures. Biometrics 56 434–442.
  • Pradel, R. (2005). Multievent: An extension of multistate capture-recapture models to uncertain states. Biometrics 61 442–447.
  • Reading, C. J. (1997). A proposed standard method for surveying reptiles on dry lowland heath. Journal of Applied Ecology 34 1057–1069.
  • Ridout, M. S. and Morgan, B. J. T. (1991). Modelling digit preference in fecundability studies. Biometrics 47 1423–1434.
  • Ruiz, P. and Laplanche, C. A. (2010). A hierarchical model to estimate the abundance and biomass of salmonids by using removal sampling and biometric data from multiple locations. Canadian Journal of Fisheries and Aquatic Sciences 67 2032–2044.
  • Sewell, D., Beebee, T. J. C. and Griffiths, R. A. (2010). Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biological Conservation 143 2102–2110.
  • Sewell, D., Guillera-Arroita, G., Griffiths, R. A. and Beebee, T. J. C. (2012). When is a species declining? Optimizing survey effort to detect population changes in reptiles. PLOS ONE 7 e43387.
  • Van Damme, R., Bauwens, D. and Verheyen, R. F. (1990). Evolutionary rigidity of thermal physiology—The case of the cool temperate lizard, Lacerta vivipara. Oikos 57 61–67.
  • Zippin, C. (1956). An evaluation of the removal method of estimating animal populations. Biometrics 12 163–189.

Supplemental materials