The Annals of Applied Statistics

HIV dynamics and natural history studies: Joint modeling with doubly interval-censored event time and infrequent longitudinal data

Li Su and Joseph W. Hogan

Full-text: Open access

Abstract

Hepatitis C virus (HCV) coinfection has become one of the most challenging clinical situations to manage in HIV-infected patients. Recently the effect of HCV coinfection on HIV dynamics following initiation of highly active antiretroviral therapy (HAART) has drawn considerable attention. Post-HAART HIV dynamics are commonly studied in short-term clinical trials with frequent data collection design. For example, the elimination process of plasma virus during treatment is closely monitored with daily assessments in viral dynamics studies of AIDS clinical trials. In this article instead we use infrequent cohort data from long-term natural history studies and develop a model for characterizing post-HAART HIV dynamics and their associations with HCV coinfection. Specifically, we propose a joint model for doubly interval-censored data for the time between HAART initiation and viral suppression, and the longitudinal CD4 count measurements relative to the viral suppression. Inference is accomplished using a fully Bayesian approach. Doubly interval-censored data are modeled semiparametrically by Dirichlet process priors and Bayesian penalized splines are used for modeling population-level and individual-level mean CD4 count profiles. We use the proposed methods and data from the HIV Epidemiology Research Study (HERS) to investigate the effect of HCV coinfection on the response to HAART.

Article information

Source
Ann. Appl. Stat., Volume 5, Number 1 (2011), 400-426.

Dates
First available in Project Euclid: 21 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1300715196

Digital Object Identifier
doi:10.1214/10-AOAS391

Mathematical Reviews number (MathSciNet)
MR2810403

Zentralblatt MATH identifier
1220.62143

Keywords
AIDS antiviral treatment interval censoring semiparametric regression

Citation

Su, Li; Hogan, Joseph W. HIV dynamics and natural history studies: Joint modeling with doubly interval-censored event time and infrequent longitudinal data. Ann. Appl. Stat. 5 (2011), no. 1, 400--426. doi:10.1214/10-AOAS391. https://projecteuclid.org/euclid.aoas/1300715196


Export citation

References

  • Barkan, S. E., Melnick, S. L., Preston-Martin, S., Weber, K., Kalish, L. A., Miotti, P., Young, M., Greenblatt, R., Sacks, H. and Feldman, J. (1998). The women’s interagency HIV study. WIHS collaborative study group. Epidemiology 9 117–125.
  • Bell, J. E. (2004). An update on the neuropathology of HIV in the HAART era. Histopathology 45 549–559.
  • Blackwell, D. and MacQueen, J. B. (1973). Ferguson distribution visa Polya urn schemes. Ann. Statist. 1 353–355.
  • Calle, M. L. and Gómez, G. (2005). A semiparametric hierarchical method for a regression model with an interval-censored covariate. Austr. New Zeal. J. Statist. 47 351–364.
  • Chen, M. H., Herring, A. H., Ibrahim, J. G. and Lipsitz, S. R. (2005). Missing-data methods for generalized linear models: A comparative review. J. Amer. Statist. Assoc. 100 332–346.
  • De Gruttola, V. and Lagakos, S. W. (1989). Analysis of doubly-censored survival data, with application to AIDS. Biometrics 45 1–11.
  • Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. J. Amer. Statist. Assoc. 89 268–277.
  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian Data Analysis, 2nd ed. Chapman Hall/CRC Press, Boca Raton, FL.
  • Greub, G., Ledergerber, B., Battegay, M., Grob, P., Perrin, L., Furrer, H., Burgisser, P., Erb, P., Boggian, K., Piffaretti, J. C., Hirschel, B., Janin, P., Francioli, P., Flepp, M. and Telenti, A. (2000). Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: The Swiss HIV Cohort Study. Lancet 356 1800–1805.
  • Jacobson, L. P., Phair, J. P. and Yamashita, T. E. (2004). Update on the virologic and immunologic response to highly active antiretroviral therapy. Current Infectious Disease Reports 6 325–332.
  • Kaslow, R. A., Ostrow, D. G., Detels, R., Phair, J. P., Polk, B. F. and Rinaldo Jr., C. R. (1987). The Multicenter AIDS Cohort Study: Rationale, organization, and selected characteristics of the participants. Am. J. Epidemiol. 126 310–318.
  • Ledergerber, B., von Overbeck, J., Egger, M. and Luthy, R. (1994). The Swiss HIV Cohort Study: Rationale, organization and selected baseline characteristics. Soz Praventivmed 39 387–394.
  • Lederman, M. M., Connick, E., Landay, A., Kuritzkes, D. R., Spritzler, J., StClair, M., Kotzin, B. L., Fox, L., Chiozzi, M. H., Leonard, J. M., Rousseau, F., Wade, M., Roe, J. D., Martinez, A. and Kessler, H. (1998). Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine and ritonavir: Results of AIDS clinical trials group protocol 315. J. Infect. Dis. 178 70–79.
  • Liang, H., Wu, H. and Carroll, R. J. (2003). The relationship between virologic and immunologic responses in AIDS clinical research using mixed-effects varying-coefficient models with measurement error. Biostatistics 4 297–312.
  • Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley, New York.
  • Miller, M. F., Haley, C., Koziel, M. J. and Rowley, C. F. (2005). Impact of hepatitis C virus on immune restoration in HIV-infected patients who start highly active antiretroviral therapy: A meta-analysis. Clin. Infect. Dis. 41 713–720.
  • Mocroft, A., Neaton, J., Bebchuk, J., Staszewski, S., Antunes, F., Knysz, B., Law, M., Phillips, A. N. and Lundgren, J. D. (2006). The feasibility of clinical endpoint trials in HIV infection in the highly active antiretroviral treatment (HAART) era. Clin. Trials 3 119–132.
  • Oller, R., Calle, M. L. and Gómez, G. (2004). Interval censoring: Model characterizations for the validity of the simplified likelihood. Canad. J. Statist. 32 315–326.
  • Pantazis, N., Touloumi, G., Walker, A. S. and Babiker, A. G. (2005). Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop-outs. Appl. Statist. 54 405–423.
  • Ramsay, J. O. and Li, X. (1998). Curve registration. J. Roy. Statist. Soc. Ser. B 60 351–363.
  • Ramsay, J. and Silverman, B. W. (2005). Functional Data Analysis. Springer, New York.
  • Rockstroh, J. K. (2006). Influence of viral hepatitis on HIV infection. J. Hepatol. 44 S25–S27.
  • Rockstroh, J. K., Mocroft, A., Soriano, V., Tural, C., Losso, M. H., Horban, A., Kirk, O., Phillips, A., Ledergerber, B., Lundgren, J. and Group, E. S. (2005). Influence of hepatitis C virus infection on HIV-1 disease progression and response to highly active antiretroviral therapy. J. Infect. Dis. 192 992–1002.
  • Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Univ. Press, Cambridge.
  • Sherman, K. E., Rouster, S. D., Chung, R. T. and Rajicic, N. (2002). Hepatitis C virus prevalence among patients infected with human immunodeficiency virus: A cross-sectional analysis of the US adult AIDS Clinical Trials Group. Clin. Infect. Dis. 34 831–837.
  • Smith, D. K., Warren, D. L., Vlahov, D., Schuman, P., Stein, M. D., Greenberg, B. L. and Holmberg, S. D. (1997). Design and baseline participant characteristics of the Human Immunodeficiency Virus Epidemiology Research (HER) study: A prospective cohort study of human immunodeficiency virus infection in US women. Amer. J. Epidemiol. 146 459–469.
  • Stebbing, J., Waters, L., Mandalia, S., Bower, M., Nelson, M. and Gazzard, B. (2005). Hepatitis C virus infection in HIV type 1-infected individuals does not accelerate a decrease in the CD4+ cell count but does increase the likelihood of AIDS-defining events. Clin. Infect. Dis. 41 906–911.
  • Sulkowski, M. S., Moore, R. D., Mehta, S. H., Chaisson, R. E. and Thomas, D. L. (2002). Hepatitis C and progression of HIV disease. J. Amer. Med. Assoc. 11 199–206.
  • Sullivan, P. S., Hanson, D. L., Teshale, E. H., Wotring, L. L. and Brooks, J. T. (2006). Effect of hepatitis C infection on progression of HIV disease and early response to initial antiretroviral therapy. AIDS 20 1171–1179.
  • Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data. Springer, New York.
  • Taylor, J. M. G., Cumberland, W. G. and Sy, J. P. (1994). A stochastic model for analysis of longitudinal AIDS data. J. Amer. Statist. Assoc. 89 727–736.
  • The MathWorks Inc. (1997). Using MATLAB. Natick, MA.
  • Thiébaut, R., Jacqmin-Gadda, H., Babiker, A., Commenges, D. and The CASCADE Collaboration (2005). Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection. Statist. Med. 24 65–82.
  • Wu, H. (2005). Statistical methods for HIV dynamic studies in AIDS clinical trials. Statist. Methods Med. Res. 14 1–22.