The Annals of Applied Probability

On Skorokhod embeddings and Poisson equations

Leif Döring, Lukas Gonon, David J. Prömel, and Oleg Reichmann

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The classical Skorokhod embedding problem for a Brownian motion $W$ asks to find a stopping time $\tau $ so that $W_{\tau }$ is distributed according to a prescribed probability distribution $\mu $. Many solutions have been proposed during the past 50 years and applications in different fields emerged. This article deals with a generalized Skorokhod embedding problem (SEP): Let $X$ be a Markov process with initial marginal distribution $\mu_{0}$ and let $\mu_{1}$ be a probability measure. The task is to find a stopping time $\tau $ such that $X_{\tau }$ is distributed according to $\mu_{1}$. More precisely, we study the question of deciding if a finite mean solution to the SEP can exist for given $\mu_{0}$, $\mu_{1}$ and the task of giving a solution which is as explicit as possible.

If $\mu_{0}$ and $\mu_{1}$ have positive densities $h_{0}$ and $h_{1}$ and the generator $\mathcal{A}$ of $X$ has a formal adjoint operator $\mathcal{A}^{*}$, then we propose necessary and sufficient conditions for the existence of an embedding in terms of the Poisson equation $\mathcal{A}^{*}H=h_{1}-h_{0}$ and give a fairly explicit construction of the stopping time using the solution of the Poisson equation. For the class of Lévy processes, we carry out the procedure and extend a result of Bertoin and Le Jan to Lévy processes without local times.

Article information

Ann. Appl. Probab., Volume 29, Number 4 (2019), 2302-2337.

Received: December 2017
Revised: July 2018
First available in Project Euclid: 23 July 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 60G40: Stopping times; optimal stopping problems; gambling theory [See also 62L15, 91A60] 60J75: Jump processes

Fokker–Planck equation Lévy process Markov process Skorokhod embedding problem random time-change


Döring, Leif; Gonon, Lukas; Prömel, David J.; Reichmann, Oleg. On Skorokhod embeddings and Poisson equations. Ann. Appl. Probab. 29 (2019), no. 4, 2302--2337. doi:10.1214/18-AAP1454.

Export citation


  • [1] Ankirchner, S., Kruse, T. and Urusov, M. (2016). Numerical approximation of irregular SDEs via Skorokhod embeddings. J. Math. Anal. Appl. 440 692–715.
  • [2] Bass, R. F. (1983). Skorokhod imbedding via stochastic integrals. In Seminar on Probability, XVII. Lecture Notes in Math. 986 221–224. Springer, Berlin.
  • [3] Baxter, J. R. and Chacon, R. V. (1974). Potentials of stopped distributions. Illinois J. Math. 18 649–656.
  • [4] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge.
  • [5] Bertoin, J. and Le Jan, Y. (1992). Representation of measures by balayage from a regular recurrent point. Ann. Probab. 20 538–548.
  • [6] Carr, P., Geman, H., Madan, D. B. and Yor, M. (2004). From local volatility to local Lévy models. Quant. Finance 4 581–588.
  • [7] Cox, A. M. G., Hobson, D. and Obłój, J. (2011). Time-homogeneous diffusions with a given marginal at a random time. ESAIM Probab. Stat. 15 S11–S24.
  • [8] Döring, L., Gonon, L., Prömel, D. J. and Reichmann, O. (2018). Existence and uniqueness results for time-inhomogeneous time-change equations and Fokker–Planck equations. Preprint, arXiv:1812.08579.
  • [9] Dupire, B. (1994). Pricing with a smile. Risk Mag. 18–20.
  • [10] Ekström, E., Hobson, D., Janson, S. and Tysk, J. (2013). Can time-homogeneous diffusions produce any distribution? Probab. Theory Related Fields 155 493–520.
  • [11] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York.
  • [12] Falkner, N. and Fitzsimmons, P. J. (1991). Stopping distributions for right processes. Probab. Theory Related Fields 89 301–318.
  • [13] Feng, H. and Hobson, D. (2016). Gambling in contests with random initial law. Ann. Appl. Probab. 26 186–215.
  • [14] Gassiat, P., Mijatović, A. and Oberhauser, H. (2015). An integral equation for Root’s barrier and the generation of Brownian increments. Ann. Appl. Probab. 25 2039–2065.
  • [15] Hirsch, F., Profeta, C., Roynette, B. and Yor, M. (2011). Peacocks and Associated Martingales, with Explicit Constructions. Springer, Milan.
  • [16] Hobson, D. (2011). The Skorokhod embedding problem and model-independent bounds for option prices. In Paris-Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Math. 2003 267–318. Springer, Berlin.
  • [17] Hobson, D. G. (1998). Robust hedging of the lookback option. Finance Stoch. 2 329–347.
  • [18] Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications, 2nd ed. Universitext. Springer, Heidelberg.
  • [19] Monroe, I. (1972). Using additive functionals to embed preassigned distributions in symmetric stable processes. Trans. Amer. Math. Soc. 163 131–146.
  • [20] Obłój, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv. 1 321–390.
  • [21] Obłój, J. and Pistorius, M. (2009). On an explicit Skorokhod embedding for spectrally negative Lévy processes. J. Theoret. Probab. 22 418–440.
  • [22] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales. Vol. 1. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge.
  • [23] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales. Vol. 2. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge. Itô calculus, Reprint of the second (1994) edition.
  • [24] Rost, H. (1970). Die Stoppverteilungen eines Markoff-Prozesses mit lokalendlichem Potential. Manuscripta Math. 3 321–329.
  • [25] Rost, H. (1971). The stopping distributions of a Markov Process. Invent. Math. 14 1–16.
  • [26] Rudin, W. (1987). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York.
  • [27] Sato, K. (1972). Potential operators for Markov processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory 193–211. Univ. California Press, Berkeley, CA.
  • [28] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge. Translated from the 1990 Japanese original, Revised by the author.
  • [29] Seel, C. and Strack, P. (2013). Gambling in contests. J. Econom. Theory 148 2033–2048.
  • [30] Skorohod, A. V. (1961). Issledovanija po teorii slučajnyh processov: (stohastičaskie differencial’nye uravnenija i predel’nye teoremy dlja processov Markova). Izdatel’stvo Kievskogo universiteta (Russian).
  • [31] Skorokhod, A. V. (1965). Studies in the Theory of Random Processes. Addison-Wesley, Reading, MA.