Abstract
Consider the graph induced by $\mathbb{Z}^{d}$, equipped with uniformly elliptic random conductances. At time $0$, place a Poisson point process of particles on $\mathbb{Z}^{d}$ and let them perform independent simple random walks. Tessellate the graph into cubes indexed by $i\in\mathbb{Z}^{d}$ and tessellate time into intervals indexed by $\tau$. Given a local event $E(i,\tau)$ that depends only on the particles inside the space time region given by the cube $i$ and the time interval $\tau$, we prove the existence of a Lipschitz connected surface of cells $(i,\tau)$ that separates the origin from infinity on which $E(i,\tau)$ holds. This gives a directly applicable and robust framework for proving results in this setting that need a multi-scale argument. For example, this allows us to prove that an infection spreads with positive speed among the particles.
Citation
Peter Gracar. Alexandre Stauffer. "Multi-scale Lipschitz percolation of increasing events for Poisson random walks." Ann. Appl. Probab. 29 (1) 376 - 433, February 2019. https://doi.org/10.1214/18-AAP1420
Information